Subcritical Crack Propagation in 3Y‐TZP Ceramics: Static and Cyclic Fatigue

A detailed analysis of crack propagation in tetragonal zirconia polycrystals doped with 3 mol% of Y2O3 (3Y-TZP) ceramics is presented. Crack propagation tests have been conducted for crack velocities of 10-12-10-3 m/s in several environments, including air, water (in the temperature range of 3°-85°C), secondary vacuum (10-5 mbar), and silicon oil. Analysis of the experimental results-three propagating regimes that are dependent on the environment and a marked threshold below which no propagation occurs-shows that stress corrosion by water molecules is the key mechanism for crack propagation. The effect of grain size on the crack velocity is quantified and analyzed in terms of transformation toughening. Experiments under cyclic loading have been conducted to quantify the effects of cyclic fatigue. Crack velocities are higher under cyclic loading than that predicted by stress corrosion alone, and the threshold is lower. Experiments that have been conducted at two different frequencies (0.1 and 1 Hz) and static-fatigue/cyclic-fatigue sequences show that both stress corrosion by water and pure cyclic-fatigue effects are operative under alternative stresses.

[1]  J. Chevalier,et al.  Low‐Temperature Aging of Y‐TZP Ceramics , 2004 .

[2]  J. Chevalier,et al.  Crack propagation and fatigue in zirconia-based composites , 1999 .

[3]  M. Anglada,et al.  Fatigue and Static Crack Propagation in Yttria‐Stabilized Tetragonal Zirconia Polycrystals: Crack Growth Micromechanisms and Precracking Effects , 1997 .

[4]  C. Olagnon,et al.  Study of the residual stress field around Vickers indentations in a 3Y-TZP , 1996, Journal of Materials Science.

[5]  J. Chevalier,et al.  Crack Propagation Behavior of Y‐TZP Ceramics , 1995 .

[6]  D. Shetty,et al.  Cyclic Fatigue of Ce‐TZP/AI2O3 Composites: Role of the Degradation of Transformation Zone Shielding , 1995 .

[7]  I. Chen,et al.  Cyclic Fatigue in Ceramics: A Balance between Crack Shielding Accumulation and Degradation , 1995 .

[8]  J. Rödel,et al.  Subcritical Crack Growth in Y-TZP and Al2O3-Toughened Y-TZP , 1993 .

[9]  Theo Fett,et al.  Differences between static and cyclic fatigue effects in alumina , 1993 .

[10]  D. Munz,et al.  Subcritical crack growth of macrocracks in alumina with R-curve behavior , 1992 .

[11]  Georg Grathwohl,et al.  Crack resistance and fatigue of transforming ceramics. II : CeO2-stabilized tetragonal ZrO2 , 1991 .

[12]  I-Wei Chen,et al.  Fatigue of Yttria‐Stabilized Zirconia: I, Fatigue Damage, Fracture Origins, and Lifetime Prediction , 1991 .

[13]  T. Fett,et al.  Determination of da/dN-ΔK1 curves for small cracks in alumina in alternating bending tests , 1991 .

[14]  I. Chen,et al.  Fatigue of Yttria-Stabilized Zirconia: II, Crack Propagation, Fatigue Striations, and Short-Crack Behavior , 1991 .

[15]  L. M. Braun,et al.  Technique for the R‐Curve Determination of Y‐TZP Using Indentation‐Produced Flaws , 1990 .

[16]  Robert O. Ritchie,et al.  Crack‐Tip Transformation Zones in Toughened Zirconia , 1990 .

[17]  Akira Okada,et al.  Subcritical Crack Growth in Sintered Silicon Nitride Exhibiting a Rising R‐Curve , 1990 .

[18]  R. Ritchie,et al.  Cyclic Fatigue‐Crack Propagation in Magnesia‐Partially‐Stabilized Zirconia Ceramics , 1990 .

[19]  B. Lawn,et al.  Interfacial energy states of moisture-exposed cracks in mica , 1990 .

[20]  A. Heuer,et al.  Microhardness and Fracture Toughness Anisotropy in Cubic Zirconium Oxide Single Crystals , 1988 .

[21]  R. Dauskardt,et al.  Fatigue Crack Propagation in Transformation‐Toughened Zirconia Ceramic , 1987 .

[22]  K. Komeya,et al.  Static and Cyclic Fatigue Behavior of a Sintered Silicon Nitride at Room Temperature , 1987 .

[23]  S. Suresh,et al.  Dynamic fatigue crack growth in polycrystalline alumina under cyclic compression , 1986 .

[24]  D. Maugis,et al.  Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement , 1985 .

[25]  T. Michalske,et al.  A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .

[26]  Anthony G. Evans,et al.  Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .

[27]  A. G. Evans,et al.  Crack propagation in ceramic materials under cyclic loading conditions , 1974, Metallurgical and Materials Transactions B.

[28]  A. Evans,et al.  A simple method for studying slow crack growth. , 1973 .

[29]  P. Nicholson,et al.  Phase Analysis in Zirconia Systems , 1972 .

[30]  S. Wiederhorn,et al.  Crack Healing in Glass , 1970 .

[31]  A. Bailey,et al.  A direct measurement of the influence of vapour, of liquid and of oriented monolayers on the interfacial energy of mica , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Sheldon M. Wiederhorn,et al.  Influence of Water Vapor on Crack Propagation in Soda‐Lime Glass , 1967 .

[33]  E. Orowan The Fatigue of Glass Under Stress , 1944, Nature.

[34]  J. Chevalier,et al.  Double-torsion testing a 3Y-TZP ceramic , 1996 .

[35]  R. Wei,et al.  Phase transformation and sustained load crack growth in ZrO2 + 3 mol% Y2O3: Experiments and kinetic modeling , 1995 .

[36]  H. Ko Effect of grain size on cyclic fatigue and static fatigue behaviour of sintered Al2O3 , 1995 .

[37]  D. Shetty,et al.  Crack Shielding in Ce‐TZP/Al2O3 Composites: Comparison of Fatigue and Sustained Load Crack Growth Specimens , 1994 .

[38]  G. Grathwohl Crack resistance and fatigue limits of structural ceramics , 1992 .

[39]  Brian R. Lawn,et al.  Crack velocity functions and thresholds in brittle solids , 1990 .

[40]  F. Lange Transformation toughening , 1982 .

[41]  F. Lange Transformation toughening , 1982 .

[42]  James C. Newman,et al.  An empirical stress-intensity factor equation for the surface crack , 1981 .

[43]  E. Fuller,et al.  An Evaluation of Double-Torsion Testing—Experimental , 1979 .

[44]  Sheldon M. Wiederhorn,et al.  Subcritical Crack Growth in Ceramics , 1974 .