Nonhydrolytic Route to Boron-Doped TiO2 Nanocrystals

A simple synthesis was applied and tested for the preparation of boron-doped titanium dioxide [TiO2(B)] nanocrystals using titanium tetraisopropoxide (TTIP) together with boric acid (H3BO3) and benzyl alcohol as reaction solvent. Changes in the TTIP/H3BO3 molar ratio allowed a scalable synthetic protocol with a significant B-dopant control. In particular, this approach does not need surfactants or a final calcination step. X-ray diffractometry (XRD), low- and high-resolution transmission electron microscopy (TEM and HRTEM), and micro Raman spectroscopy revealed that the TiO2 nanocrystals produced have diameters up to about 10 nm and are mainly of the anatase phase but that a brookite phase was progressively formed with increased dopant level. The amount of boron was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES), and the presence of boron inside the crystals was determined by 11B cross-polarized magic-angle spinning nuclear magnetic resonance (11B CP-MAS NMR) spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed the presence of boron on the nanocrystal surfaces, confirming the trend in the dopant concentration already observed with ICP-AES elemental analysis. Microphotoluminescence studies indicated the formation of three different typical luminescent defect states in correlation with the amount of added boron in the titania. UV/Vis absorption spectra showed a boron-dependent redshift of the absorption edge.

[1]  Feng Li,et al.  Heteroatom‐Modulated Switching of Photocatalytic Hydrogen and Oxygen Evolution Preferences of Anatase TiO2 Microspheres , 2012 .

[2]  G. Gigli,et al.  Surfactant-free synthesis of pure anatase TiO2 nanorods suitable for dye-sensitized solar cells , 2010 .

[3]  G. Gigli,et al.  Novel Preparation Method of TiO2-Nanorod-Based Photoelectrodes for Dye-Sensitized Solar Cells with Improved Light-Harvesting Efficiency , 2010 .

[4]  N. Murafa,et al.  Photocatalytic activity of boron-modified titania under UV and visible-light illumination. , 2010, ACS applied materials & interfaces.

[5]  S. C. Parker,et al.  Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .

[6]  Jingjing Xu,et al.  Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity , 2009 .

[7]  J. Hupka,et al.  Photocatalytic activity of boron-modified TiO2 under visible light: The effect of boron content, calcination temperature and TiO2 matrix , 2009 .

[8]  W. Ho,et al.  Aerosol-assisted flow synthesis of B-doped, Ni-doped and B–Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO , 2009 .

[9]  P. Bruce,et al.  Diffusion in Confined Dimensions : Li+ Transport in Mixed Conducting TiO2-B Nanowires , 2009 .

[10]  G. Pacchioni,et al.  Boron-Doped Anatase TiO2: Pure and Hybrid DFT Calculations , 2009 .

[11]  H. Sheu,et al.  Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-Gel Process , 2009 .

[12]  S. Kim,et al.  Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles , 2008 .

[13]  P. Fornasiero,et al.  A High-Frequency (95 GHz) Electron Paramagnetic Resonance Study of B-doped TiO2 photocatalysts , 2008 .

[14]  J. Hupka,et al.  Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light , 2008 .

[15]  Kangnian Fan,et al.  Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol–gel reaction of TiCl4 and benzyl alcohol , 2007 .

[16]  R. M. Lambert,et al.  Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. , 2007, Journal of the American Chemical Society.

[17]  D. Barreca,et al.  TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications , 2007 .

[18]  S. Capone,et al.  TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications , 2007 .

[19]  P. Fornasiero,et al.  Photocatalytic activity of TiO2 doped with boron and vanadium. , 2007, Journal of hazardous materials.

[20]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[21]  Dongsen Mao,et al.  The effect of B2O3 addition on the crystallization of amorphous TiO2–ZrO2 mixed oxide , 2007 .

[22]  Z. Gan,et al.  Solid-state multinuclear magnetic resonance investigation of Pyrex® , 2006 .

[23]  Pierre-Louis Taberna,et al.  TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage , 2006 .

[24]  Dong Yang,et al.  Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles , 2006 .

[25]  P. Bruce,et al.  TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries , 2006 .

[26]  T. Hyeon,et al.  Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. , 2005, The journal of physical chemistry. B.

[27]  G. Stucky,et al.  3-D molecular assembly of function in titania-based composite material systems. , 2005, Accounts of chemical research.

[28]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[29]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[30]  M. Carotta,et al.  Near-infrared photoluminescence in titania: Evidence for phonon-replica effect , 2003 .

[31]  M. Janssen,et al.  Local and medium range order in alkali borate glasses: an overview of recent solid state NMR results , 2003 .

[32]  C. Malitesta,et al.  X-Ray photoelectron spectroscopy characterisation of Langmuir Blodgett films containing TiO2 nanoparticles grown by room-temperature hydrolysis of TiO(C2O4)22- , 2002 .

[33]  C. Giacovazzo,et al.  Quanto: a Rietveld program for quantitative phase analysis of polycrystalline mixtures , 2001 .

[34]  E. Sudoł,et al.  XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation , 2001 .

[35]  E. Suzuki,et al.  Photocatalytic production of hydrogen from water using TiO2 and B/TiO2 , 2000 .

[36]  P. P. Lottici,et al.  Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .

[37]  M. Pruski,et al.  Quantitative study of the short range order in B2O3 and B2S3 by MAS and two-dimensional triple-quantum MAS 11B NMR. , 1997, Solid state nuclear magnetic resonance.

[38]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[39]  Francis Levy,et al.  Photoluminescence in TiO2 anatase single crystals , 1993 .

[40]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .