Ferromagnetic germanide in Ge nanowire transistors for spintronics application.

To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.

[1]  B. Jonker,et al.  Electrical injection and detection of spin accumulation in Ge at room temperature , 2012, 1202.3994.

[2]  Hsing-Yu Tuan,et al.  High-yield, high-throughput synthesis of germanium nanowires by metal–organic chemical vapor deposition and their functionalization and applications , 2012 .

[3]  Chang-Yup Park,et al.  Publisher's Note: Electrical spin injection and accumulation in CoFe/MgO/Ge contacts at room temperature [Phys. Rev. B 84, 165315 (2011)] , 2011 .

[4]  Kang L. Wang,et al.  Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing , 2011 .

[5]  Chang-Yup Park,et al.  Electrical spin injection and accumulation in CoFe/MgO/Ge contacts at room temperature , 2011, 1108.3145.

[6]  H. Jaffrès,et al.  Electrical spin injection and detection at Al2O3/n-type germanium interface using three terminal geometry , 2011, 1107.3510.

[7]  Kang L. Wang,et al.  Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors. , 2011, ACS nano.

[8]  K. Yamane,et al.  Spin accumulation created electrically in an n-type germanium channel using Schottky tunnel contacts , 2011, 1105.1012.

[9]  Kang L. Wang,et al.  Electrical spin injection and transport in germanium , 2011, 1103.5095.

[10]  A. Lemaître,et al.  Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface , 2011, 1101.1691.

[11]  Joan M. Redwing,et al.  Formation of nickel germanide contacts to Ge nanowires , 2010 .

[12]  Kang L. Wang,et al.  Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors , 2010, Nanotechnology.

[13]  Kang L. Wang,et al.  Room-temperature electric-field controlled ferromagnetism in Mn0.05Ge0.95 quantum dots. , 2010, ACS nano.

[14]  Yu Huang,et al.  Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts. , 2010, Nano letters.

[15]  Yong Wang,et al.  Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots. , 2010, Nature materials.

[16]  E. Tutuc,et al.  Lateral spin injection in germanium nanowires. , 2010, Nano letters.

[17]  Kang L. Wang,et al.  Growth of single-crystalline, atomically smooth MgO films on Ge(0 0 1) by molecular beam epitaxy , 2009 .

[18]  E. Bertagnolli,et al.  Atomic scale alignment of copper-germanide contacts for ge nanowire metal oxide field effect transistors. , 2009, Nano letters.

[19]  Shixiong Zhang,et al.  Relative influence of surface states and bulk impurities on the electrical properties of Ge nanowires. , 2009, Nano letters.

[20]  K. Kasahara,et al.  Electrical injection and detection of spin-polarized electrons in silicon through an Fe3Si/Si Schottky tunnel barrier , 2009, 0904.2980.

[21]  B. Jonker,et al.  Electrical spin injection into Si: A comparison between Fe/Si Schottky and Fe/Al2O3 tunnel contacts , 2009 .

[22]  V. L. Thanh,et al.  Epitaxial growth of Mn5Ge3/Ge(111) heterostructures for spin injection , 2008 .

[23]  N. Myung,et al.  In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si. , 2008, Nano letters.

[24]  B. Jonker,et al.  Electrical Spin injection into Silicon: a comparison between Fe/Schottky and Fe/Al$_{2}$O$_{3}$ tunnel contacts , 2008 .

[25]  Kang L. Wang,et al.  Direct structural evidences of Mn11Ge8 and Mn5Ge2 clusters in Ge0.96Mn0.04 thin films , 2008 .

[26]  Yu Huang,et al.  Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. , 2008, Nano letters.

[27]  A. Gossard,et al.  Dimensionally constrained D'yakonov–Perel' spin relaxation in n-InGaAs channels: transition from 2D to 1D , 2007 .

[28]  Jane P. Chang,et al.  In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. , 2007, Nano letters.

[29]  E. K. Evangelou,et al.  Fermi-level pinning and charge neutrality level in germanium , 2006 .

[30]  Paolo Lugli,et al.  Silicon-nanowire transistors with intruded nickel-silicide contacts. , 2006, Nano letters.

[31]  H. Dai,et al.  Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors. , 2006, Nano letters.

[32]  O. Wunnicke Gate capacitance of back-gated nanowire field-effect transistors , 2006, cond-mat/0607379.

[33]  S. Sugahara,et al.  Precipitation of Amorphous Ferromagnetic Semiconductor Phase in Epitaxially Grown Mn-Doped Ge Thin Films , 2005, cond-mat/0511361.

[34]  A. Continenza,et al.  First-principles characterization of ferromagnetic Mn 5 Ge 3 for spintronic applications , 2004, cond-mat/0409734.

[35]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[36]  S. Erwin,et al.  Spin polarization and electronic structure of ferromagnetic Mn5Ge3 epilayers , 2004, cond-mat/0407001.

[37]  O.M.J. van 't Erve,et al.  Comparison of Fe/Schottky and Fe/Al2O3 tunnel barrier contacts for electrical spin injection into GaAs , 2004 .

[38]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[39]  L. Feldman,et al.  Epitaxial ferromagnetic Mn5Ge3 on Ge(111) , 2003 .

[40]  S. Sugahara,et al.  A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain , 2003, cond-mat/0310623.

[41]  Yu-Cheng Chang,et al.  Rapid fabrication of high quality self-assembled nanometer gold particles by spin coating method , 2003 .

[42]  J. Albrecht,et al.  Spin-polarized electron transport at ferromagnet/semiconductor Schottky contacts , 2003, cond-mat/0302457.

[43]  Aubrey T. Hanbicki,et al.  A Group‐IV Ferromagnetic Semiconductor: MnxGe1‐x. , 2002 .

[44]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[45]  K. Ploog,et al.  Room-temperature spin injection from Fe into GaAs. , 2001, Physical review letters.

[46]  G. Schmidt,et al.  Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor , 1999, cond-mat/9911014.

[47]  H. Löhneysen,et al.  Strongly enhanced Curie temperature in carbon-doped Mn5Ge3 films , 1999, cond-mat/9905280.

[48]  M. Krečmerová,et al.  Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2,3-Dihydroxypropyl)adenine , 2012, Molecules.

[49]  Grünberg,et al.  Novel magnetoresistance effect in layered magnetic structures: Theory and experiment. , 1990, Physical review. B, Condensed matter.

[50]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[51]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[52]  H. Jaffrès,et al.  Electrical spin injection and detection at Al2O3/n-type germanium interface using three terminal geometry , 2011, 1107.3510.

[53]  Kang L. Wang,et al.  Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics. , 2009, Nano letters.