Shape Descriptors for Classification of Functional Data

Curve discrimination is an important task in engineering and other sciences. We propose several shape descriptors for classifying functional data, inspired by form analysis from the image analysis field: statistical moments, coefficients of the components of independent component analysis, and two mathematical morphology descriptors (morphological covariance and spatial size distributions). These are applied to three problems: an artificial problem, a speech recognition problem, and a biomechanical application. Shape descriptors are compared with other methods in the literature, with better or similar performance obtaining.

[1]  Tadeusz Stepinski,et al.  Automatic detecting and classifying defects during Eddy current inspection of riveted lap-joints , 2000 .

[2]  Paul H. C. Eilers,et al.  Generalized linear regression on sampled signals and curves: a P -spline approach , 1999 .

[3]  Richard H. Glendinning,et al.  Classifying non-uniformly sampled vector-valued curves , 2004, Pattern Recognit..

[4]  P. Burman A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .

[5]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[6]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[7]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[8]  Brian D. Marx,et al.  Generalized Linear Regression on Sampled Signals and Curves: A P-Spline Approach , 1999, Technometrics.

[9]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[10]  Ping Sheng Huang Automatic Gait Recognition via Statistical Approaches , 1999 .

[11]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[12]  Florentina Bunea,et al.  Functional classification in Hilbert spaces , 2005, IEEE Transactions on Information Theory.

[13]  J C Fairbank,et al.  The Oswestry low back pain disability questionnaire. , 1980, Physiotherapy.

[14]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[15]  Fabrice Rossi,et al.  Functional multi-layer perceptron: a non-linear tool for functional data analysis , 2007, Neural Networks.

[16]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[17]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[18]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[19]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[20]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[21]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[22]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[23]  Magalie Fromont,et al.  Functional Classification with Margin Conditions , 2006, COLT.

[24]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[25]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[26]  M. Jensen,et al.  The Subjective Experience of Acute Pain An Assessment of the Utility of 10 Indices , 1989, The Clinical journal of pain.

[27]  Guillermo Ayala,et al.  Spatial Size Distributions: Applications to Shape and Texture Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Jean-François Rivest,et al.  Granulometries and pattern spectra for radar signals , 2006, Signal Process..

[29]  Ping Sheng Huang Automatic gait recognition via statistical approaches for extended template features , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[30]  L. Ferré,et al.  Multilayer Perceptron with Functional Inputs: an Inverse Regression Approach , 2006, 0705.0211.

[31]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[32]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[33]  Louis Ferré,et al.  Discrimination de courbes par regression inverse fonctionnelle , 2005 .

[34]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[35]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[36]  H C EilersPaul,et al.  Generalized linear regression on sampled signals and curves , 1999 .

[37]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[38]  Umberto Castellani,et al.  On-line Compendium of Computer Vision , 2002 .

[39]  Andrew D. Back,et al.  A First Application of Independent Component Analysis to Extracting Structure from Stock Returns , 1997, Int. J. Neural Syst..

[40]  M. Forina,et al.  Multivariate calibration. , 2007, Journal of chromatography. A.

[41]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[42]  G. Matheron Random Sets and Integral Geometry , 1976 .

[43]  Juan Romo,et al.  Depth-based classification for functional data , 2005, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.

[44]  C.W. Anderson,et al.  Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks , 1998, IEEE Transactions on Biomedical Engineering.

[45]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[46]  Gérard Biau,et al.  FUNCTIONAL SUPERVISED CLASSIFICATION WITH WAVELETS , 2008 .

[47]  Brieuc Conan-Guez,et al.  Phoneme Discrimination with Functional Multi-Layer Perceptrons , 2004 .

[48]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[49]  David S. Johnson,et al.  Dimacs series in discrete mathematics and theoretical computer science , 1996 .

[50]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[51]  Michel Verleysen,et al.  Representation of functional data in neural networks , 2005, Neurocomputing.

[52]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[53]  Fabrice Rossi,et al.  Support Vector Machine For Functional Data Classification , 2006, ESANN.