Learning Data-Driven Reflectance Priors for Intrinsic Image Decomposition

We propose a data-driven approach for intrinsic image decomposition, which is the process of inferring the confounding factors of reflectance and shading in an image. We pose this as a two-stage learning problem. First, we train a model to predict relative reflectance ordering between image patches ('brighter', 'darker', 'same') from large-scale human annotations, producing a data-driven reflectance prior. Second, we show how to naturally integrate this learned prior into existing energy minimization frame-works for intrinsic image decomposition. We compare our method to the state-of-the-art approach of Bell et al. [7] on both decomposition and image relighting tasks, demonstrating the benefits of the simple relative reflectance prior, especially for scenes under challenging lighting conditions.

[1]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[2]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[3]  Edward H. Adelson,et al.  The perception of shading and reflectance , 1996 .

[4]  E. Adelson Lightness Perception and Lightness Illusions , 1999 .

[5]  Frédo Durand,et al.  A gentle introduction to bilateral filtering and its applications , 2007, SIGGRAPH Courses.

[6]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  M. Werman,et al.  Color lines: image specific color representation , 2004, CVPR 2004.

[8]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Edward H. Adelson,et al.  Estimating Intrinsic Component Images using Non-Linear Regression , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[10]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[11]  Edward H. Adelson,et al.  Ground truth dataset and baseline evaluations for intrinsic image algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Philip H. S. Torr,et al.  Improved Moves for Truncated Convex Models , 2008, J. Mach. Learn. Res..

[13]  Peter V. Gehler,et al.  Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance , 2011, NIPS.

[14]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[15]  Chuohao Yeo,et al.  Intrinsic images decomposition using a local and global sparse representation of reflectance , 2011, CVPR 2011.

[16]  Adolfo Muñoz,et al.  Intrinsic Images by Clustering , 2012, Comput. Graph. Forum.

[17]  Ameet Talwalkar,et al.  Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..

[18]  Jitendra Malik,et al.  Shape, albedo, and illumination from a single image of an unknown object , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Stephen Lin,et al.  A Closed-Form Solution to Retinex with Nonlocal Texture Constraints , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Lei Jiang,et al.  Statistical Invariance for Texture Synthesis , 2012, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jitendra Malik,et al.  Color Constancy, Intrinsic Images, and Shape Estimation , 2012, ECCV.

[22]  Sylvain Paris,et al.  User-assisted image compositing for photographic lighting , 2013, ACM Trans. Graph..

[23]  David A. Forsyth,et al.  Non-parametric Filtering for Geometric Detail Extraction and Material Representation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Noah Snavely,et al.  Intrinsic images in the wild , 2014, ACM Trans. Graph..

[25]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[26]  Anton van den Hengel,et al.  Efficient SDP inference for fully-connected CRFs based on low-rank decomposition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Stella X. Yu,et al.  Learning lightness from human judgement on relative reflectance , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Jitendra Malik,et al.  Shape, Illumination, and Reflectance from Shading , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[30]  Stella X. Yu,et al.  Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[31]  William T. Freeman,et al.  Learning Ordinal Relationships for Mid-Level Vision , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).