Estimation of covariance matrices based on hierarchical inverse-Wishart priors

This paper focuses on Bayesian shrinkage methods for covariance matrix estimation. We examine posterior properties and frequentist risks of Bayesian estimators based on new hierarchical inverse-Wishart priors. More precisely, we give the conditions for the existence of the posterior distributions. Advantages in terms of numerical simulations of posteriors are shown. A simulation study illustrates the performance of the estimation procedures under three loss functions for relevant sample sizes and various covariance structures.

[1]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[2]  M. L. Eaton Multivariate statistics : a vector space approach , 1985 .

[3]  L. R. Haff ESTIMATION OF THE INVERSE COVARIANCE MATRIX: RANDOM MIXTURES OF THE INVERSE WISHART MATRIX AND THE IDENTITY , 1979 .

[4]  R. Kohn,et al.  Parsimonious Covariance Matrix Estimation for Longitudinal Data , 2002 .

[5]  Tatsuya Kubokawa,et al.  Estimating the covariance matrix: a new approach , 2003 .

[6]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[7]  M. Srivastava,et al.  "Estimating the Covariance Matrix: A New Approach", June 1999 , 1999 .

[8]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[9]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[10]  Christian Francq,et al.  Covariance matrix estimation for estimators of mixing weak ARMA models , 2000 .

[11]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[12]  Colin J. Champion Empirical Bayesian estimation of normal variances and covariances , 2003 .

[13]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[14]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[15]  B. Efron,et al.  Multivariate Empirical Bayes and Estimation of Covariance Matrices , 1976 .

[16]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[17]  J. Rosenthal,et al.  Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains , 2006, math/0702412.

[18]  A. Dempster Elements of Continuous Multivariate Analysis , 1969 .

[19]  L. R. Haff Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix , 1980 .

[20]  T. Kubokawa A Revisit to Estimation of the Precision Matrix of the Wishart Distribution , 2004 .

[21]  R. Kass,et al.  Nonconjugate Bayesian Estimation of Covariance Matrices and its Use in Hierarchical Models , 1999 .

[22]  R. Kass,et al.  Shrinkage Estimators for Covariance Matrices , 2001, Biometrics.

[23]  Chan‐Fu Chen,et al.  Bayesian Inference for a Normal Dispersion Matrix and its Application to Stochastic Multiple Regression Analysis , 1979 .

[24]  D. Dey,et al.  Estimation of a covariance matrix under Stein's loss , 1985 .

[25]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[26]  J. Berger,et al.  Estimation of a Covariance Matrix Using the Reference Prior , 1994 .

[27]  M. Pourahmadi,et al.  Bayesian analysis of covariance matrices and dynamic models for longitudinal data , 2002 .