Effect of liquid layering at the liquid–solid interface on thermal transport

Abstract Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid–solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid.

[1]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[2]  Robbins,et al.  Shear flow near solids: Epitaxial order and flow boundary conditions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[3]  Robbins,et al.  Phase transitions and universal dynamics in confined films. , 1992, Physical review letters.

[4]  T. Ohara, D. Suzuki,et al.  INTERMOLECULAR ENERGY TRANSFER AT A SOLID-LIQUID INTERFACE , 2000 .

[5]  G. Ciccotti,et al.  Thermal conductivity of the Lennard‐Jones liquid by molecular dynamics calculations , 1987 .

[6]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[7]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[8]  Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.

[9]  S. Phillpot,et al.  Two regimes of thermal resistance at a liquid-solid interface , 2003 .

[10]  Jianping Gao,et al.  Structures, solvation forces and shear of molecular films in a rough nano-confinement , 2000 .

[11]  Demirel,et al.  Glasslike Transition of a Confined Simple Fluid. , 1996, Physical review letters.

[12]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[13]  S. Granick,et al.  Reassessment of Solidification in Fluids Confined between Mica Sheets , 2003 .

[14]  J. Israelachvili Intermolecular and surface forces , 1985 .

[15]  E. Kumacheva,et al.  Confinement-Induced Phase Transitions in Simple Liquids , 1995, Science.

[16]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[17]  D. Poulikakos,et al.  Molecular dynamics simulation in nanoscale heat transfer: A review , 2003 .

[18]  S. Maruyama T. Kurashige S. Matsumoto Y. Yamaguchi T. Kimura,et al.  LIQUID DROPLET IN CONTACT WITH A SOLID SURFACE , 1998 .

[19]  H. D. Cochran,et al.  Molecular dynamics simulation of the rheological and dynamical properties of a model alkane fluid under confinement , 1999 .

[20]  Frank van Swol,et al.  On the interface between a fluid and a planar wall , 1984 .

[21]  J. Barrat,et al.  Kapitza resistance at the liquid—solid interface , 2002, cond-mat/0209607.

[22]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[23]  P. Dutta,et al.  Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study , 2000 .

[24]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[25]  Wolf,et al.  Molecular-dynamics study of lattice-defect-nucleated melting in silicon. , 1989, Physical review. B, Condensed matter.

[26]  G. H. Geiger,et al.  Transport Phenomena in Materials Processing , 1998 .

[27]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .