Parallel Spectral Element Methods For The Incompressible Navier-Stokes Equations

We present a parallel spectral element method for solution of the unsteady incompressible Navier-Stokes equations in general three-dimensional geometries. The approach combines high-order spatial discretizations with iterative solution techniques in a way which exploits with high efficiency currently available medium-grained distributed-memory parallel computers. Emphasis is placed on the development of algorithm constructs which allow for solution of physically relevant problems; we specifically address the problem of parallel solution in domains of general topology. The success of the procedure is demonstrated by several examples of moderate Reynolds number Navier-Stokes calculations on the Intel vector hypercube.

[1]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[2]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[3]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[4]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[5]  Einar M. Rønquist,et al.  Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations , 1988 .

[6]  Seymour V. Parter Large Scale Scientific Computation. , 1986 .

[7]  W. A. Gross,et al.  Fluid film lubrication , 1980 .

[8]  G. C. Fox,et al.  Solving Problems on Concurrent Processors , 1988 .

[9]  G. E. Karniadakis,et al.  A Spectral Element Method for Solution of the Two-and Three-Dimensional Time-Dependent Incompressible Navier-Stokes Equations , 1986 .

[10]  C. Baker The laminar horseshoe vortex , 1979, Journal of Fluid Mechanics.

[11]  Karl Ernst Osthaus Van de Velde , 1920 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  B. Nour-Omid,et al.  Solving finite element equations on concurrent computers , 1987 .

[14]  Robert G. Voigt,et al.  DESIGN, DEVELOPMENT, AND USE OF THE FINITE ELEMENT MACHINE , 1984 .

[15]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[16]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[17]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[18]  Robert Francis Lucas,et al.  Solving planar systems of equations on distributed-memory multiprocessors , 1988 .

[19]  Yvon Maday,et al.  Spectral element multigrid. II. Theoretical justification , 1988, J. Sci. Comput..

[20]  Robert E. Benner,et al.  Development of Parallel Methods for a $1024$-Processor Hypercube , 1988 .

[21]  S. Taneda,et al.  Unsteady Flow past a Circular Cylinder , 1969 .

[22]  Geoffrey C. Fox General techniques and regular problems , 1988 .

[23]  C. William Gear,et al.  Selected Papers from the Second Conference on Parallel Processing for Scientific Computing, Norfolk, Virginia, USA, November 18-21, 1985 , 1987, PPSC.