Uncertainty in the DTI Visualization Pipeline

Diffusion-Weighted Magnetic Resonance Imaging (DWI) enables the invivo visualization of fibrous tissues such as white matter in the brain. DiffusionTensor Imaging (DTI) specifically models the DWI diffusion measurements as a second order-tensor. The processing pipeline to visualize this data, from image acquisition to the final rendering, is rather complex. It involves a considerable amount of measurements, parameters and model assumptions, all of which generate uncertainties in the final result which typically are not shown to the analyst in the visualization. In recent years, there has been a considerable amount of work on the visualization of uncertainty in DWI, and specifically DTI. In this chapter, we primarily focus on DTI given its simplicity and applicability, however, several aspects presented are valid for DWI as a whole. We explore the various sources of uncertainties involved, approaches for modeling those uncertainties, and, finally, we survey different strategies to visually represent them.We also look at several relatedmethods of uncertainty visualization that have been applied outside DTI and discuss how these techniques can be adopted to the DTI domain. We conclude our discussion with an overview of potential research directions. F. Siddiqui (B) · T. Höllt · A. Vilanova Delft University of Technology, Delft, The Netherlands e-mail: F.P.Siddiqui@tudelft.nl T. Höllt e-mail: T.Hollt-1@tudelft.nl A. Vilanova e-mail: A.Vilanova@tue.nl T. Höllt Leiden University Medical Center, Leiden, The Netherlands A. Vilanova Eindhoven University of Technology, Eindhoven, The Netherlands © The Author(s) 2021 E. Özarslan et al. (eds.), Anisotropy Across Fields and Scales, Mathematics and Visualization, https://doi.org/10.1007/978-3-030-56215-1_6 125 126 F. Siddiqui et al.

[1]  D G Gadian,et al.  Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations , 2002, Magnetic resonance in medicine.

[2]  Roger W. Johnson,et al.  An Introduction to the Bootstrap , 2001 .

[3]  Jie Liu,et al.  A Comparative Study of Different Level Interpolations for Improving Spatial Resolution in Diffusion Tensor Imaging , 2014, IEEE Journal of Biomedical and Health Informatics.

[4]  Lambertus Hesselink,et al.  Visualizing second-order tensor fields with hyperstreamlines , 1993, IEEE Computer Graphics and Applications.

[5]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[6]  Anna Vilanova,et al.  Illustrative White Matter Fiber Bundles , 2010, Comput. Graph. Forum.

[7]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[8]  Søren Hauberg,et al.  Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers , 2014, MICCAI.

[9]  A. Anderson Theoretical analysis of the effects of noise on diffusion tensor imaging , 2001, Magnetic resonance in medicine.

[10]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[11]  M. Sheelagh T. Carpendale,et al.  Exploration of uncertainty in bidirectional vector fields , 2008, Electronic Imaging.

[12]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[13]  Marco Catani,et al.  Beyond localization: from hodology to function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  Kotagiri Ramamohanarao,et al.  Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography? , 2018, Magnetic resonance in medicine.

[15]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[16]  Thomas Schultz,et al.  Visualizing Uncertainty in HARDI Tractography Using Superquadric Streamtubes , 2014, EuroVis.

[17]  Wilfried Philips,et al.  Isotropic non-white matter partial volume effects in constrained spherical deconvolution , 2014, Front. Neuroinform..

[18]  Andrea Fuster,et al.  Direction-Controlled DTI Interpolation , 2015, Visualization and Processing of Higher Order Descriptors for Multi-Valued Data.

[19]  Wolfgang Grodd,et al.  Visualizing MR diffusion tensor fields by dynamic fiber tracking and uncertainty mapping , 2006, Comput. Graph..

[20]  P. V. van Zijl,et al.  Analysis of noise effects on DTI‐based tractography using the brute‐force and multi‐ROI approach , 2004, Magnetic resonance in medicine.

[21]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[22]  Daniel Weiskopf,et al.  Flow Radar Glyphs—Static Visualization of Unsteady Flow with Uncertainty , 2011, IEEE Transactions on Visualization and Computer Graphics.

[23]  Bart M. ter Haar Romeny,et al.  Parameter Sensitivity Visualization for DTI Fiber Tracking , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  Roland G. Henry,et al.  Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters , 2006, NeuroImage.

[25]  David Atkinson,et al.  Study of Connectivity in the Brain Using the Full Diffusion Tensor from MRI , 2001, IPMI.

[26]  Peter J. Basser,et al.  Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI , 2007, Signal Process..

[27]  Thomas Schultz,et al.  Diffusion MRI visualization , 2019, NMR in biomedicine.

[28]  Pratik Mukherjee,et al.  Visualizing white matter pathways in the living human brain: diffusion tensor imaging and beyond. , 2007, Neuroimaging clinics of North America.

[29]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[30]  R Ralph Brecheisen,et al.  Visualization of uncertainty in fiber tracking based on diffusion tensor imaging , 2012 .

[31]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[32]  Pere-Pau Vázquez,et al.  Uncertainty Visualization of Brain Fibers , 2012, CEIG.

[33]  Christian Rössl,et al.  Towards Glyphs for Uncertain Symmetric Second‐Order Tensors , 2019, Comput. Graph. Forum.

[34]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[35]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[36]  Christopher Nimsky,et al.  Visualization of white matter tracts with wrapped streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[37]  Thomas Schultz,et al.  Fuzzy Fibers: Uncertainty in dMRI Tractography , 2013, Scientific Visualization.

[38]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[39]  Gerik Scheuermann,et al.  Hierarchical Poisson-Disk Sampling for Fiber Stipples , 2013, VMLS@EuroVis.

[40]  Alexander Leemans Visualization of Diffusion MRI Data , 2010 .

[41]  Nico S. Gorbach,et al.  Fiber stippling: An illustrative rendering for probabilistic diffusion tractography , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[42]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[43]  Thomas Schultz,et al.  Visualizing Tensor Normal Distributions at Multiple Levels of Detail , 2016, IEEE Transactions on Visualization and Computer Graphics.

[44]  Simon B. Eickhoff,et al.  Evaluating a visualization of uncertainty in probabilistic tractography , 2010, Medical Imaging.

[45]  Wei Chen,et al.  Visual exploration of HARDI fibers with probabilistic tracking , 2016, Inf. Sci..

[46]  Mario Hlawitschka,et al.  Multi-Modal Visualization of Probabilistic Tractography , 2016, Visualization in Medicine and Life Sciences III.

[47]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[48]  Bernhard Schölkopf,et al.  HiFiVE: A Hilbert Space Embedding of Fiber Variability Estimates for Uncertainty Modeling and Visualization , 2013, Comput. Graph. Forum.

[49]  Jeff M. Phillips,et al.  Uncertainty visualization in HARDI based on ensembles of ODFs , 2012, 2012 IEEE Pacific Visualization Symposium.

[50]  Ross T. Whitaker,et al.  Adaptive Riemannian Metrics for Improved Geodesic Tracking of White Matter , 2011, IPMI.

[51]  Rüdiger Westermann,et al.  Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[52]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[53]  Tim McGraw,et al.  Stochastic DT-MRI Connectivity Mapping on the GPU , 2007, IEEE Transactions on Visualization and Computer Graphics.

[54]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[55]  M. Catani Diffusion tensor magnetic resonance imaging tractography in cognitive disorders , 2006, Current opinion in neurology.

[56]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[57]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[58]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[59]  Timothy Edward John Behrens,et al.  A Bayesian framework for global tractography , 2007, NeuroImage.

[60]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[61]  Dongrong Xu,et al.  Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares. , 2011, Magnetic resonance imaging.

[62]  Bart M. ter Haar Romeny,et al.  Illustrative uncertainty visualization of DTI fiber pathways , 2012, The Visual Computer.

[63]  Kai Lawonn,et al.  Glyph-Based Comparative Visualization for Diffusion Tensor Fields , 2016, IEEE Transactions on Visualization and Computer Graphics.

[64]  Søren Hauberg,et al.  A Random Riemannian Metric for Probabilistic Shortest-Path Tractography , 2015, MICCAI.

[65]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[66]  Zhiguo Jiang,et al.  A Basic Introduction to Diffusion Tensor Imaging Mathematics and ImageProcessing Steps , 2017 .

[67]  Bart M. ter Haar Romeny,et al.  Fast and sleek glyph rendering for interactive HARDI data exploration , 2009, 2009 IEEE Pacific Visualization Symposium.

[68]  Sara López-Pintado,et al.  Simplicial band depth for multivariate functional data , 2014, Adv. Data Anal. Classif..

[69]  Hans-Peter Seidel,et al.  Topological Visualization of Brain Diffusion MRI Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[70]  Carl-Fredrik Westin,et al.  New Approaches to Estimation of White Matter Connectivity in Diffusion Tensor MRI: Elliptic PDEs and Geodesics in a Tensor-Warped Space , 2002, MICCAI.

[71]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[72]  Derek K. Jones,et al.  Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets , 2002, NeuroImage.

[73]  T. Schwartz,et al.  Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. , 2001, Journal of neurosurgery.

[74]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[75]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[76]  Carlo Pierpaoli,et al.  PASTA: Pointwise assessment of streamline tractography attributes , 2005, Magnetic resonance in medicine.

[77]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[78]  P. J. Basser Quantifying Errors in Fiber-Tract Direction and Diffusion Tensor Field Maps Resulting from MR Noise , 2007 .

[79]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[80]  Christopher Nimsky,et al.  Preoperative and Intraoperative Diffusion Tensor Imaging-based Fiber Tracking in Glioma Surgery , 2005, Neurosurgery.

[81]  David S. Ebert,et al.  Abstractive Representation and Exploration of Hierarchically Clustered Diffusion Tensor Fiber Tracts , 2008, Comput. Graph. Forum.

[82]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[83]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[84]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[85]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[86]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. , 1996, Journal of magnetic resonance.

[87]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[88]  Atul Narkhede,et al.  Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults , 2014, Brain Structure and Function.

[89]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[90]  Thomas Schultz,et al.  A Maximum Enhancing Higher‐Order Tensor Glyph , 2010, Comput. Graph. Forum.

[91]  Ghassan Hamarneh,et al.  Uncertainty in Tractography via Tract Confidence Regions , 2013, CDMRI/MMBC@MICCAI.

[92]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[93]  Rachid Deriche,et al.  Inferring White Matter Geometry from Di.usion Tensor MRI: Application to Connectivity Mapping , 2004, ECCV.

[94]  David H. Laidlaw,et al.  An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications , 2006, Visualization and Processing of Tensor Fields.

[95]  Tobias Isenberg A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography , 2015, Visualization and Processing of Higher Order Descriptors for Multi-Valued Data.

[96]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[97]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[98]  A. Connelly,et al.  Improved probabilistic streamlines tractography by 2 nd order integration over fibre orientation distributions , 2009 .

[99]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[100]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[101]  Gareth J. Barker,et al.  From diffusion tractography to quantitative white matter tract measures: a reproducibility study , 2003, NeuroImage.

[102]  Max A. Viergever,et al.  Partial volume effect as a hidden covariate in DTI analyses , 2011, NeuroImage.

[103]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[104]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[105]  Brandon Whitcher,et al.  Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging , 2008, Human brain mapping.

[106]  Elmar Eisemann,et al.  Overview + Detail Visualization for Ensembles of Diffusion Tensors , 2017, Comput. Graph. Forum.

[107]  Carl-Fredrik Westin,et al.  Regularized Stochastic White Matter Tractography Using Diffusion Tensor MRI , 2002, MICCAI.

[108]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[109]  Ryan P Cabeen,et al.  REDUCING CSF PARTIAL VOLUME EFFECTS TO ENHANCE DIFFUSION TENSOR IMAGING METRICS OF BRAIN MICROSTRUCTURE. , 2016, Technology and innovation.

[110]  Christopher Nimsky,et al.  Isosurface-Based Generation of Hulls Encompassing Neuronal Pathways , 2009, Stereotactic and Functional Neurosurgery.

[111]  Guido Gerig,et al.  Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. , 2006, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention.