Riboswitches as antibacterial drug targets

[1]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[2]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[3]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[4]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[5]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[6]  T. Henkin,et al.  Identification of a Mutation in the Bacillus subtilis S-Adenosylmethionine Synthetase Gene That Results in Derepression of S-Box Gene Expression , 2006, Journal of bacteriology.

[7]  M. Famulok,et al.  High‐Throughput‐Compatible Assay for glmS Riboswitch Metabolite Dependence , 2006, Chembiochem : a European journal of chemical biology.

[8]  R. Breaker,et al.  Development and Application of a High-Throughput Assay for glmS Riboswitch Activators , 2006, RNA biology.

[9]  R. Monaghan,et al.  Antibacterial drug discovery--then, now and the genomics future. , 2006, Biochemical pharmacology.

[10]  U. Theuretzbacher,et al.  Nature's clarion call of antibacterial resistance: are we listening? , 2006, Current opinion in investigational drugs.

[11]  R. Breaker,et al.  Molecular-recognition characteristics of SAM-binding riboswitches. , 2006, Angewandte Chemie.

[12]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[13]  R. Breaker,et al.  Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. , 2005, Chemistry & biology.

[14]  D. Crothers,et al.  The kinetics of ligand binding by an adenine-sensing riboswitch. , 2005, Biochemistry.

[15]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[16]  T. Begley,et al.  Thi20, a remarkable enzyme from Saccharomyces cerevisiae with dual thiamin biosynthetic and degradation activities. , 2005, Bioorganic chemistry.

[17]  Jeffrey E. Barrick,et al.  Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria , 2005, Genome Biology.

[18]  R. Breaker,et al.  Riboswitches as versatile gene control elements. , 2005, Current opinion in structural biology.

[19]  D. Crothers,et al.  The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. , 2005, Molecular cell.

[20]  Thomas A Steitz,et al.  On the structural basis of peptide‐bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit , 2005, FEBS letters.

[21]  T. Hermann,et al.  RNA as a target for small-molecule therapeutics , 2005 .

[22]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[23]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[24]  Zasha Weinberg,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004, Science.

[25]  J. Hugenholtz,et al.  Riboflavin Production in Lactococcus lactis: Potential for In Situ Production of Vitamin-Enriched Foods , 2004, Applied and Environmental Microbiology.

[26]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[27]  Jeffrey E. Barrick,et al.  New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[29]  Jeffrey E. Barrick,et al.  Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. , 2004, Nucleic acids research.

[30]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.

[31]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[32]  Ali Nahvi,et al.  An mRNA structure that controls gene expression by binding S-adenosylmethionine , 2003, Nature Structural Biology.

[33]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[34]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[35]  Vitaly Epshtein,et al.  The riboswitch-mediated control of sulfur metabolism in bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Gelfand,et al.  Comparative Genomics of Thiamin Biosynthesis in Procaryotes , 2002, The Journal of Biological Chemistry.

[37]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[39]  A. Murchie,et al.  The bacterial ribosome, a promising focus for structure-based drug design. , 2002, Current opinion in pharmacology.

[40]  T. Henkin,et al.  Prediction of Gene Function in Methylthioadenosine Recycling from Regulatory Signals , 2002, Journal of bacteriology.

[41]  Howard Xu,et al.  A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus , 2002, Molecular microbiology.

[42]  R. Zagursky,et al.  Transcription Profiling-Based Identification ofStaphylococcus aureus Genes Regulated by the agrand/or sarA Loci , 2001, Journal of bacteriology.

[43]  S. Saha,et al.  RNA Expression Analysis Using an AntisenseBacillus subtilis Genome Array , 2001, Journal of bacteriology.

[44]  G. Varani,et al.  Targeting RNA with small-molecule drugs: therapeutic promise and chemical challenges. , 2001, Accounts of chemical research.

[45]  R. Breaker,et al.  Immobilized RNA switches for the analysis of complex chemical and biological mixtures , 2001, Nature Biotechnology.

[46]  R. A. Kreneva,et al.  Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region , 1992, Molecular and General Genetics MGG.

[47]  Y. Lu,et al.  Fine-structure mapping of cis-acting control sites in the lysC operon of Bacillus subtilis. , 1992, FEMS microbiology letters.

[48]  R. A. Kreneva,et al.  Genetic mapping of regulatory mutations ofBacillus subtilis riboflavin operon , 1990, Molecular and General Genetics MGG.

[49]  P. Nygaard,et al.  Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs , 1987, Journal of bacteriology.

[50]  K. Matsui,et al.  Riboflavin Production by Roseoflavin-resistant Strains of Some Bacteria , 1982 .

[51]  A. Iwashima,et al.  Formation of pyrithiamine pyrophosphate in brain tissue. , 1976, Journal of biochemistry.

[52]  J. Szulmajster,et al.  Regulation of dihydrodipicolinate synthase and aspartate kinase in Bacillus subtilis , 1975, Journal of bacteriology.

[53]  J. E. Folk,et al.  Inhibition of lysine utilization in bacteria by S-(beta-aminoethyl) cysteine and its reversal by lysine peptides. , 1958, Archives of biochemistry and biophysics.

[54]  J. C. Koedam The mode of action of pyrithiamine as an inductor of thiamine deficiency. , 1958, Biochimica et biophysica acta.

[55]  W. Shive,et al.  DL-4-Oxalysine, an Inhibitory Analog of Lysine , 1957 .

[56]  D. Woolley,et al.  SELECTIVE REVERSIBLE INHIBITION OF MICROBIAL GROWTH WITH PYRITHIAMINE , 1943, The Journal of experimental medicine.

[57]  W. J. Robbins The Pyridine Analog of Thiamin and the Growth of Fungi. , 1941, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Breaker,et al.  Antibacterial lysine analogs that target lysine riboswitches. , 2007, Nature chemical biology.

[59]  P. McNamara,et al.  Trends in RNA research , 2006 .

[60]  Ren Zhang,et al.  DEG: a database of essential genes. , 2004, Nucleic acids research.

[61]  A. Bacher,et al.  Biosynthesis of vitamin b2 (riboflavin). , 2000, Annual review of nutrition.

[62]  R. Coccia,et al.  Thialysine utilization for protein synthesis by CHO cells. , 1986, Physiological chemistry and physics and medical NMR.

[63]  R. Nielsen A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes , 2022 .