Stochasticity, invasions, and branching random walks.

We link deterministic integrodifference equations to stochastic, individual-based simulations by means of branching random walks. Using standard methods, we determine speeds of invasion for both average densities and furthest-forward individuals. For density-independent branching random walks, demographic stochasticity can produce extinction. Demographic stochasticity does not, however, reduce the overall asymptotic speed of invasion or preclude continually accelerating invasions.

[1]  F. N. David,et al.  Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. , 1973 .

[2]  Richard R. Veit,et al.  Dispersal, Population Growth, and the Allee Effect: Dynamics of the House Finch Invasion of Eastern North America , 1996, The American Naturalist.

[3]  Bateman Aj Is gene dispersion normal , 1950 .

[4]  Robert H. Gardner,et al.  A spatial model for the spread of invading organisms subject to competition , 1997 .

[5]  Hal Caswell,et al.  DEMOGRAPHY AND DISPERSAL: CALCULATION AND SENSITIVITY ANALYSIS OF INVASION SPEED FOR STRUCTURED POPULATIONS , 2000 .

[6]  M A Lewis,et al.  Invasion speeds in fluctuating environments , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  P. Gould,et al.  Effects of habitat heterogeneity and dispersal strategies on population persistence in annual plants , 1999 .

[8]  M. Kot,et al.  Discrete-time growth-dispersal models , 1986 .

[9]  H. Caswell,et al.  Demography and dispersal : life table response experiments for invasion speed , 2003 .

[10]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[11]  J. C. Allen,et al.  Areawide management of the cotton boll weevil: use of a spatio–temporal model in augmentative biological control , 1998 .

[12]  N. Shigesada,et al.  Invasion and the range expansion of species : effects of long-distance dispersal , 2002 .

[13]  J. Maynard Smith,et al.  Mathematical Ideas in Biology , 1968 .

[14]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[15]  L. Allen,et al.  Dispersal and competition models for plants , 1996 .

[16]  H. Caswell,et al.  Declining survival probability threatens the North Atlantic right whale. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Robin E. Snyder How demographic stochasticity can slow biological invasions , 2003 .

[18]  A. Hastings,et al.  Persistence of Transients in Spatially Structured Ecological Models , 1994, Science.

[19]  Jonathan A. Sherratt,et al.  Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? , 1997 .

[20]  L. Berec Techniques of spatially explicit individual-based models: construction, simulation, and mean-field analysis , 2002 .

[21]  L. Allen An introduction to stochastic processes with applications to biology , 2003 .

[22]  V. Grimm Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? , 1999 .

[23]  S. Pacala,et al.  Modeling and analysis of stochastic invasion processes , 2000, Journal of mathematical biology.

[24]  J. C. Allen,et al.  Spatially explicit ecological models: a spatial convolution approach , 2001 .

[25]  Roger Lui,et al.  Existence and stability of travelling wave solutions of a nonlinear integral operator , 1983 .

[26]  M. Kot,et al.  Integrodifference equations, Allee effects, and invasions , 2002, Journal of mathematical biology.

[27]  R. Beverton,et al.  On the dynamics of exploited fish populations , 1993, Reviews in Fish Biology and Fisheries.

[28]  Marek Kimmel,et al.  Branching processes in biology , 2002 .

[29]  D Mollison,et al.  The "deterministic simple epidemic" unmasked. , 1993, Mathematical biosciences.

[30]  Alan Hastings,et al.  The effects of dispersal patterns on marine reserves: does the tail wag the dog? , 2002, Theoretical population biology.

[31]  D Mollison,et al.  Dependence of epidemic and population velocities on basic parameters. , 1991, Mathematical biosciences.

[32]  W. Ricker Stock and Recruitment , 1954 .

[33]  J. Biggins Chernoff's theorem in the branching random walk , 1977, Journal of Applied Probability.

[34]  The impacs of long-range dispersal on the rate of spread in population and epidemic models , 2002 .

[35]  J. D. Biggins,et al.  HOW FAST DOES A GENERAL BRANCHING RANDOM WALK SPREAD , 1997 .

[36]  M. Andersen Properties of some density-dependent integrodifference equation population models. , 1991, Mathematical biosciences.

[37]  James S. Clark,et al.  Invasion by Extremes: Population Spread with Variation in Dispersal and Reproduction , 2001, The American Naturalist.

[38]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[39]  J. C. Allen,et al.  Spatiotemporal model for studying insect dynamics in large-scale cropping systems , 1997 .

[40]  M. A. Lewis,et al.  Integrodifference models for persistence in fragmented habitats , 1997 .

[41]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[42]  Mortimer,et al.  Spatial dynamics and critical patch size of annual plant populations , 1998, Journal of theoretical biology.

[43]  Denis Mollison,et al.  The rate of spatial propagation of simple epidemics , 1972 .

[44]  R. May,et al.  Bifurcations and Dynamic Complexity in Simple Ecological Models , 1976, The American Naturalist.

[45]  James S. Clark,et al.  Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord , 1998, The American Naturalist.

[46]  Krishna B. Athreya,et al.  Classical and modern branching processes , 1997 .

[47]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[48]  L. Rass,et al.  Discrete time spatial models arising in genetics, evolutionary game theory, and branching processes. , 1997, Mathematical biosciences.

[49]  Hans F. Weinberger,et al.  Asymptotic behavior of a model in population genetics , 1978 .

[50]  M. Kot,et al.  Diffusion-driven period-doubling bifurcations. , 1989, Bio Systems.

[51]  G. Grimmett,et al.  Probability and random processes , 2002 .

[52]  Robert M. May,et al.  On Relationships Among Various Types of Population Models , 1973, The American Naturalist.

[53]  J. Mcglade,et al.  Advanced ecological theory : principles and applications , 1999 .

[54]  H. McKean Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov , 1975 .

[55]  Hans F. Weinberger,et al.  Long-Time Behavior of a Class of Biological Models , 1982 .

[56]  Mark A. Lewis,et al.  3. Variability, Patchiness, and J u m p Dispersal i n the Spread of an Invading Population , 1998 .

[57]  M. Kot,et al.  Discrete-time travelling waves: Ecological examples , 1992, Journal of mathematical biology.

[58]  A mathematical model for weed dispersal and control , 1996 .

[59]  C. L. Chiang,et al.  An Introduction To Stochastic Processes And Their Applications | event.zain.com , 2021 .

[60]  Mark Kot,et al.  Dispersal and Pattern Formation in a Discrete-Time Predator-Prey Model , 1995 .

[61]  H. Caswell Matrix population models : construction, analysis, and interpretation , 2001 .

[62]  A. Bateman Is gene dispersion normal? , 1950, Heredity.

[63]  Carlos Castillo-Chavez,et al.  Mathematical approaches for emerging and reemerging infectious diseases , 2002 .

[64]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[65]  M A Lewis,et al.  Spread rate for a nonlinear stochastic invasion , 2000, Journal of mathematical biology.

[66]  Vladimir Vatutin,et al.  Branching processes. II , 1993 .

[67]  R. Lui A Nonlinear Integral Operator Arising from a Model in Population Genetics II. Initial Data with Compact Support , 1982 .

[68]  Denis Mollison,et al.  Spatial Contact Models for Ecological and Epidemic Spread , 1977 .

[69]  P. Kareiva Population dynamics in spatially complex environments: theory and data , 1990 .