Fourier transform infrared spectroscopy-thermogravimetry analysis of the thermal decomposition mechanism of an effective flame retardant, hydroquinone bis(di-2-methylphenyl phosphate)

[1]  N. Van den Eede,et al.  In vitro human metabolism of the flame retardant resorcinol bis(diphenylphosphate) (RDP). , 2015, Environmental science & technology.

[2]  Xinlong Wang,et al.  Synergistic effect of hydroquinone bis(di-2-methylphenyl phosphate) and novolac phenol in ABS composites , 2014 .

[3]  Xinlong Wang,et al.  Synthesis of A Novel Phosphorus–Nitrogen-Silicon Polymeric Flame Retardant and Its Application in Poly(lactic acid) , 2014 .

[4]  J. S. Kim,et al.  Toxicity assessment of air-delivered particle-bound polybrominated diphenyl ethers. , 2014, Toxicology.

[5]  Jordi Mestres,et al.  Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health. , 2014, Environment international.

[6]  W. Dekant,et al.  Mammalian toxicology and human exposures to the flame retardant 2,2′,6,6′-tetrabromo-4,4′-isopropylidenediphenol (TBBPA): implications for risk assessment , 2013, Archives of Toxicology.

[7]  B. Schartel,et al.  Aryl phosphate–aryl phosphate synergy in flame-retarded bisphenol A polycarbonate/acrylonitrile-butadiene-styrene , 2013 .

[8]  K. Shin,et al.  Dynamics and mechanism of flame retardants in polymer matrixes: experiment and simulation. , 2013, The journal of physical chemistry. B.

[9]  J. Zhao,et al.  An Effective Flame Retardant and Smoke Suppression Oligomer for Epoxy Resin , 2013 .

[10]  Li Jin-xia,et al.  SYNTHESIS AND APPLICATION OF PHOSPHORUS FLAME RETARDANT HDP ABS COMPOSITES: SYNTHESIS AND APPLICATION OF PHOSPHORUS FLAME RETARDANT HDP ABS COMPOSITES , 2013 .

[11]  Z. Zhiyong,et al.  Novel phosphorus-containing hyperbranched polysiloxane and its high performance flame retardant cyanate ester resins , 2013 .

[12]  O. Monticelli,et al.  Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene , 2013 .

[13]  B. Schartel,et al.  Influence of the structure of aryl phosphates on the flame retardancy of polycarbonate/acrylonitrile–butadiene–styrene , 2012 .

[14]  Jianqing Zhao,et al.  Flame retardancy, smoke suppression effect and mechanism of aryl phosphates in combination with magnesium hydroxide in polyamide 6 , 2012, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[15]  Liu Xiaodan The Recent Progress of Flame-retardants , 2012 .

[16]  Huang Zhaoge Perspectives of Halogenated Flame Retardants , 2012 .

[17]  Bernhard Schartel,et al.  Phosphorus-based Flame Retardancy Mechanisms—Old Hat or a Starting Point for Future Development? , 2010, Materials.

[18]  Jinhwan Kim,et al.  Thermal stabilities and flame retardancies of nitrogen–phosphorus flame retardants based on bisphosphoramidates , 2008 .

[19]  Ou Zong-he Research progress of halogen-free flame retardant PC/ABS alloy , 2008 .

[20]  Yu-Zhong Wang,et al.  A Novel Phosphorus‐Containing Poly(ethylene terephthalate) Nanocomposite with Both Flame Retardancy and Anti‐Dripping Effects , 2006 .

[21]  Deng Yi Phosphorus Containing Flame Retardants for Textile , 2004 .

[22]  I. Hamerton,et al.  RECENT DEVELOPMENTS IN THE CHEMISTRY OF HALOGEN-FREE FLAME RETARDANT POLYMERS , 2002 .

[23]  S. Levchik,et al.  Fire‐retardant action of resorcinol bis(diphenyl phosphate) in PC–ABS blend. II. Reactions in the condensed phase , 1999 .

[24]  B. Williams,et al.  Resorcinol bis(diphenyl phosphate), a non‐halogen flame‐retardant additive , 1997 .