NUMERICAL MICROMAGNETICS: A REVIEW

Numerical simulation has become an important tool in the study of both static and dynamic issues in ferromagnetic materials.We present a review of some of the recen tadvances in numerical Micromagnetics. Key words: Micromagnetics, Landau-Lifshitz equation AMS subject classifications: 65M06, 65Z05, 35Q60

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Robert V. Kohn,et al.  Effective dynamics for ferromagnetic thin films: a rigorous justification , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Xiao-Ming Wu Two dimensional Landau-Lifshitz equations in micromagnetism , 2000 .

[4]  Guo Boling,et al.  Global Weak Solution for the Landau–Lifshitz–Maxwell Equation in Three Space Dimensions , 1997 .

[5]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[6]  N. Hayashi,et al.  A numerical study of LaBonte's iteration: an approach to acceleration , 1996 .

[7]  W. Brown,et al.  Structure and Energy of One‐Dimensional Domain Walls in Ferromagnetic Thin Films , 1965 .

[8]  Luis Vega,et al.  Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .

[9]  Thomas C. Anthony,et al.  Thermal variations in switching fields for sub-micron MRAM cells , 2001 .

[10]  Robert V. Kohn,et al.  Magnetic Elements at Finite Temperature and Large Deviation Theory , 2005, Journal of nonlinear science.

[11]  Isaak D. Mayergoyz,et al.  Landau–Lifshitz magnetization dynamics and eddy currents in metallic thin films , 2002 .

[12]  I. A. Privorotskii Thermodynamic theory of domain structures , 1976 .

[13]  Saied N. Tehrani,et al.  Edge-pinned states in patterned submicron NiFeCo structures , 2000 .

[14]  J. Bland,et al.  Ultrathin Magnetic Structures III , 1994 .

[15]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[16]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[17]  Carlos J. García-Cervera,et al.  SPIN-POLARIZED TRANSPORT: EXISTENCE OF WEAK SOLUTIONS , 2006 .

[18]  Trond Steihaug,et al.  Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..

[19]  I. B. Puchalska,et al.  Magnetization process in Permalloy multilayer films , 1991 .

[20]  Carlos J. García-Cervera,et al.  One-dimensional magnetic domain walls , 2004, European Journal of Applied Mathematics.

[21]  A. M. Roma,et al.  Adaptive mesh refinement for micromagnetics simulations , 2006, IEEE Transactions on Magnetics.

[22]  F. Lázaro,et al.  Langevin-dynamics study of the dynamical properties of small magnetic particles , 1998 .

[23]  Nilima Nigam,et al.  Geometric integration on spheres and some interesting applications , 2003 .

[24]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[25]  Luis Vega,et al.  Formation of Singularities and Self-Similar Vortex Motion Under the Localized Induction Approximation , 2003 .

[26]  Xiaobo Tan,et al.  Cayley transforms in micromagnetics , 2001 .

[27]  Jian-Gang Zhu,et al.  Magnetization vortices and anomalous switching in patterned NiFeCo submicron arrays , 1999 .

[28]  Luis Vega,et al.  Self-similar solutions of the localized induction approximation: singularity formation , 2004 .

[29]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[30]  Werner Scholz,et al.  Langevin micromagnetics of recording media using subgrain discretization , 2000 .

[31]  E Weinan,et al.  Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements , 2003 .

[32]  Jalal Shatah,et al.  The stability of localized solutions of Landau‐Lifshitz equations , 2002 .

[33]  Maria G. Reznikoff Rare Events in Finite and Infinite Dimensions , 2004 .

[34]  J. L. Blue,et al.  Using multipoles decreases computation time for magnetostatic self-energy , 1991 .

[35]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[36]  J. L. Olsen,et al.  Interscience Tracts on Physics and Astronomy, No. 12, Electron Transport in Metals , 1963 .

[37]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[38]  S. W. Yuan,et al.  Fast adaptive algorithms for micromagnetics , 1992 .

[39]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[40]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[41]  Christof Melcher,et al.  Existence of Partially Regular Solutions for Landau–Lifshitz Equations in ℝ3 , 2005 .

[42]  W. Heisenberg Zur Theorie des Ferromagnetismus , 1928 .

[43]  On Difference Schemes and Symplectic Geometry ? X1 Introductory Remarks , 2022 .

[44]  Roger Moser Partial Regularity for Harmonic Maps and Related Problems , 2005 .

[45]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[46]  E Weinan,et al.  Numerical Methods for the Landau-Lifshitz Equation , 2000, SIAM J. Numer. Anal..

[47]  D. R. Fredkin,et al.  Finite element methods for micromagnetics , 1992 .

[48]  Luis Vega,et al.  Small solutions to nonlinear Schrödinger equations , 1993 .

[49]  Robert V. Kohn,et al.  Domain Branching in Uniaxial Ferromagnets: A Scaling Law for the Minimum Energy , 1999 .

[50]  Antonio DeSimone,et al.  2-d stability of the Néel wall , 2006 .

[51]  Robert V. Kohn,et al.  Repulsive Interaction of Néel Walls, and the Internal Length Scale of the Cross-Tie Wall , 2003, Multiscale Model. Simul..

[52]  P. Weiss L'hypothèse du champ moléculaire et la propriété ferromagnétique , 1907 .

[53]  Felix Otto Cross-over in Scaling Laws: A Simple Example from Micromagnetics , 2002 .

[54]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[55]  Robert V. Kohn,et al.  Magnetic microstructures - a paradigm of multiscale problems , 1999 .

[56]  Rugang Ye,et al.  Finite-time blow-up of the heat flow of harmonic maps from surfaces , 1992 .

[57]  Jian Zhai,et al.  Existence and behavior of solutions to the Landau-Lifshitz equation , 1999 .

[58]  Nakao Hayashi,et al.  Remarks on nonlinear Schrödinger equations in one space dimension , 1994, Differential and Integral Equations.

[59]  Michael Struwe,et al.  On the evolution of harmonic maps in higher dimensions , 1988 .

[60]  Richard D. James,et al.  Micromagnetics of very thin films , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  M. Lakshmanan,et al.  Landau-Lifshitz equation of ferromagnetism: exact treatment of the Gilbert damping , 1984 .

[62]  E Weinan,et al.  Accurate numerical methods for micromagnetics simulations with general geometries , 2003 .

[63]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[64]  Yasutaro Uesaka,et al.  Direct Solution of the Landau-Lifshitz-Gilbert Equation for Micromagnetics , 1989 .

[65]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[66]  Hans G. Kaper,et al.  Hysteresis in layered spring magnets , 2001 .

[67]  Christof Melcher,et al.  The Logarithmic Tail of Néel Walls , 2003 .

[68]  Hiroyuki Chihara,et al.  LOCAL EXISTENCE FOR SEMILINEAR SCHRODINGER EQUATIONS , 1995 .

[69]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[70]  I. Bejenaru,et al.  On Schrödinger maps , 2008 .

[71]  Gallagher,et al.  Thermally assisted magnetization reversal in submicron-sized magnetic thin films , 2000, Physical review letters.

[72]  E Weinan,et al.  Minimum action method for the study of rare events , 2004 .

[73]  Antonio DeSimone,et al.  A constrained theory of magnetoelasticity , 2002 .

[74]  Antonio DeSimone,et al.  Existence of Minimizers for a Variational Problem in Two‐Dimensional Nonlinear Magnetoelasticity , 1998 .

[75]  Augusto Visintin,et al.  On Landau-Lifshitz’ equations for ferromagnetism , 1985 .

[76]  Nobuo Hayashi,et al.  Calculation of Demagnetizing Field Distribution Based on Fast Fourier Transform of Convolution , 1996 .

[77]  Dirk Praetorius,et al.  H-Matrix Techniques for Stray-Field Computations in Computational Micromagnetics , 2005, LSSC.

[78]  David Kinderlehrer,et al.  Frustration and microstructure : an example in magnetostriction , 1991 .

[79]  E Weinan,et al.  A Gauss-Seidel projection method for micromagnetics simulations , 2001 .

[80]  Weizhu Bao,et al.  High-order local artificial boundary conditions for problems in unbounded domains , 2000 .

[81]  François Alouges,et al.  On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .

[82]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[83]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[84]  J. Daughton Magnetoresistive memory technology , 1992 .

[85]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[86]  C. García-Cervera Structure of the Bloch wall in multilayers , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[87]  E. Weinan,et al.  Topics in the analysis and computation of stochastic differential equations , 2003 .

[88]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[89]  Gilles Carbou,et al.  On the Ferromagnetism equations in the non static case , 2004 .

[90]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[91]  Yunmei Chen,et al.  Existence and singularities for the Dirichlet boundary value problems of Landau-Lifshitz equations , 2002 .

[92]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[93]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[94]  Gilles Carbou,et al.  Regular solutions for Landau-Lifschitz equation in a bounded domain , 2001, Differential and Integral Equations.

[95]  Gilles Carbou,et al.  Recent results in micromagnetism , 1999 .

[96]  Carlos J. García-Cervera,et al.  Improved Gauss-Seidel projection method for micromagnetics simulations , 2003 .

[97]  Vladimir L. Safonov,et al.  Thermal-dynamic reversal of fine magnetic grains with arbitrary anisotropy axes orientation , 2002 .

[98]  J. Weber,et al.  Fluctuation Dissipation Theorem , 1956 .

[99]  A. Hubert,et al.  Solving Micromagnetic Problems. Towards an Optimal Numerical Method , 1993 .

[100]  Weiqing Ren,et al.  Higher Order String Method for Finding Minimum Energy Paths , 2003 .