An Interval Type-2 Fuzzy multiple echelon supply chain model

Planning resources for a supply chain is a major factor determining its success or failure. In this paper we build on previous work introducing an Interval Type-2 Fuzzy Logic model of a multiple echelon supply chain. It is believed that the additional degree of uncertainty provided by Interval Type-2 Fuzzy Logic will allow for better representation of the uncertainty and vagueness present in resource planning models. First, the subject of Supply Chain Management is introduced, then some background is given on related work using Type-1 Fuzzy Logic. A description of the Interval Type-2 Fuzzy model is given, and a test scenario detailed. A Genetic Algorithm uses the model to search for a near-optimal plan for the scenario. A discussion of the results follows, along with conclusions and details of intended further work. 2009 Elsevier B.V. All rights reserved.

[1]  Keith J. Burnham,et al.  Coordinated control of distribution supply chains in the presence of fuzzy customer demand , 2008, Eur. J. Oper. Res..

[2]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[3]  Simon Miller,et al.  Improving resource planning with soft computing techniques , 2008 .

[4]  Juite Wang,et al.  Fuzzy decision modeling for supply chain management , 2005, Fuzzy Sets Syst..

[5]  Robert Ivor John,et al.  Geometric Type-1 and Type-2 Fuzzy Logic Systems , 2007, IEEE Transactions on Fuzzy Systems.

[6]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[7]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[8]  Sanja Petrovic,et al.  A Fuzzy Genetic Algorithm for Real-World Job Shop Scheduling , 2005, IEA/AIE.

[9]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[10]  R. John,et al.  Type-2 Fuzzy Logic: A Historical View , 2007, IEEE Computational Intelligence Magazine.

[11]  Radivoj Petrovic,et al.  Supply chain modelling using fuzzy sets , 1999 .

[12]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[13]  Jerry M. Mendel,et al.  Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series , 1999, Inf. Sci..

[14]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[15]  M. Sakawa,et al.  An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate , 1999 .

[16]  Douglas J. Thomas,et al.  Coordinated supply chain management , 1996 .

[17]  Rafik A. Aliev,et al.  Fuzzy-genetic approach to aggregate production-distribution planning in supply chain management , 2007, Inf. Sci..

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[20]  Robert Ivor John,et al.  An Interval Type-2 Fuzzy Distribution Network , 2009, IFSA/EUSFLAT Conf..