Managing Spatial and Temporal Variability in Irrigated Agriculture Through Adaptive Control

Abstract Spatial variability in crop production occurs as a result of spatial and temporal variations in soil structure and fertility; soil physical, chemical and hydraulic properties; irrigation applications; pests and diseases; plant genetics; and local microclimate. This review paper argues that infield variability can be managed and the efficiency of irrigation water use increased by spatially variable application of irrigation water to meet the specific needs of individual management zones (areas of crop whose properties are relatively homogenous). Key areas identified requiring interdisciplinary research are the prescription of irrigated crop water requirements, strategies for quantifying and managing spatial variability, and the development of adaptive systems for control of water application at appropriate temporal intervals and spatial scales. Example strategies for the implementation of adaptive control for furrow irrigation and large mobile irrigation machines are described.

[1]  Alok Kumar,et al.  Thermal Infrared Radiation for Assessing Crop Water Stress in Wheat , 1990 .

[2]  Wesley W. Wallender,et al.  Computer Vision System for Automatic Control of Precision Furrow Irrigation System , 2006 .

[3]  Phillip N. Johnson,et al.  VARIABILITY OF COTTON YIELD AND QUALITY , 2001 .

[4]  A. W. Warrick,et al.  Crop yield as affected by spatial variations of soil and irrigation , 1983 .

[5]  Cheng Jiang,et al.  Spatial variability of soil nutrients and site-specific nutrient management in the P.R. China , 2002 .

[6]  David Lamb,et al.  PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops , 2001 .

[7]  R. C. Muchow,et al.  Modelling sugarcane production systems I. Development and performance of the sugarcane module , 1999 .

[8]  L. G. James,et al.  A Furrow Irrigation Automation System Utilizing Adaptive Control , 1992 .

[9]  Tom O. Owino,et al.  Instrumentation for Variable-Rate Lateral Irrigation System , 2005 .

[10]  Bruce A. McCarl,et al.  Yield Variability as Influenced by Climate: A Statistical Investigation , 2004 .

[11]  C. R. Camp,et al.  MODIFIED CENTER PIVOT SYSTEM FOR PRECISION MANAGEMENT OF WATER AND NUTRIENTS , 1998 .

[12]  Menggui Jin,et al.  Temporal and spatial soil water management: a case study in the Heilonggang region, PR China , 1999 .

[13]  Kenneth A. Sudduth,et al.  Missouri Precision Agriculture Research and Education , 1996 .

[14]  Steven R. Raine,et al.  Towards evaluation of adaptive control systems for improved site-specific irrigation of cotton , 2008 .

[15]  Erik Weyer,et al.  A reference model approach to performance monitoring of control loops with applications to irrigation channels , 2005 .

[16]  B. A. King,et al.  SUPERVISORY CONTROL AND DATAACQUISITION SYSTEM FOR SITE-SPECIFIC CENTER PIVOT IRRIGATION , 1998 .

[17]  D. F. Heermann,et al.  Frequency Analysis of Yield for Delineating Yield Response Zones , 2004, Precision Agriculture.

[18]  G. Fipps,et al.  Six years of LEPA in Texas-less water, higher yields. , 1990 .

[19]  G. J. Hoffman,et al.  Engineering systems to enhance irrigation performance , 2004, Irrigation Science.

[20]  M. H. Gillies,et al.  Infiltration parameters from surface irrigation advance and run-off data , 2005, Irrigation Science.

[21]  C. R. Camp,et al.  Irrigation: Site-specific crop management with a center pivot , 1998 .

[22]  R. J. Smith,et al.  Real-time prediction of soil infiltration characteristics for the management of furrow irrigation , 2006, Irrigation Science.

[23]  G. Piccinni,et al.  Remote sensing of biotic and abiotic stress for irrigation management of cotton , 2007 .

[24]  N. Zhang,et al.  APPLICATIONS OF A FIELD–LEVEL GEOGRAPHIC INFORMATION SYSTEM (FIS) IN PRECISION AGRICULTURE , 2000 .

[25]  M. Gillies,et al.  Managing the effect of infiltration variability on the performance of surface irrigation , 2008 .

[26]  A. J. Ciha Slope Position and Grain Yield of Soft White Winter Wheat1 , 1984 .

[27]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[28]  Ayse Irmak,et al.  RELATIONSHIP BETWEEN PLANT AVAI LABLE SOIL WATER AND YIELD FOR EXPLAINING SOYBEAN YIELD VARIABILITY , 2002 .

[29]  A. B. Hearn,et al.  OZCOT: A simulation model for cotton crop management , 1994 .

[30]  YangQuan Chen,et al.  Iterative Learning Control Approach to a Diffusion Control Problem in an Irrigation Application , 2006, 2006 International Conference on Mechatronics and Automation.

[31]  Steven R. Raine,et al.  Irrigation application efficiency and deep drainage potential under surface irrigated cotton , 2005 .

[32]  N. Zhang,et al.  Precision agriculture—a worldwide overview , 2002 .

[33]  M. H. Gillies,et al.  Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation , 2006, Irrigation Science.

[34]  A. S. Humpherys,et al.  Water sensor feedback control system for surface irrigation , 1995 .

[35]  Clyde W. Fraisse,et al.  Management Zone Analyst (MZA) , 2004, Agronomy Journal.

[36]  G. Robertson,et al.  Management, topographical, and weather effects on spatial variability of crop grain yields , 2005 .

[37]  A. J. Clemmens Feedback Control of Basin‐Irrigation System , 1992 .

[38]  R. Bramley,et al.  Understanding variability in winegrape production systems , 2004 .

[39]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[40]  John Stafford,et al.  Spatial variability in soil and crop , 1997 .

[41]  P. Gerard,et al.  Variability of Selected Soil Properties and Their Relationships with Soybean Yield , 2003 .

[42]  J. A. Millen,et al.  Spatial variation of corn response to irrigation , 2002 .

[43]  D. J. Hills,et al.  APPLICATION UNIFORMITY FOR FIXED AND ROTATING SPRAY PLATE SPRINKLERS , 1998 .

[44]  R. J. Smith,et al.  Toward a simple real‐time control system for efficient management of furrow irrigation , 2007 .

[45]  S. Raine,et al.  Soil-water and salt movement associated with precision irrigation systems - research investment opportunities , 2005 .

[46]  Michael D. Dukes,et al.  Uniformity testing of variable-rate center pivot irrigation control systems , 2006, Precision Agriculture.

[47]  G. W. Buchleiter,et al.  Design considerations for site specific irrigation. , 2000 .

[48]  Gabriela Maletti,et al.  Assessment of Two Variable Rate Irrigation Controllers used on a Centre- Pivot , 2005 .

[49]  S. H. Moore,et al.  Using yield maps to create management zones in field crops. , 2000 .

[50]  S. L. Rawlins Moving From Precision to Prescription Farming: The Next Plateau , 1996 .

[51]  M. Jin,et al.  Systems Analysis of Agriculture - Water Resources - Environment in Hebei Plain , 1994 .

[52]  M. Robertson,et al.  Simulating response of maize to previous velvet bean (Mucuna pruriens) crop and nitrogen fertiliser in Malawi , 2005 .

[53]  C. Fraisse,et al.  Management Zone Analyst ( MZA ) : Software for Subfield Management Zone Delineation , 2003 .

[54]  M. Robertson,et al.  Optimising maize plant population and irrigation strategies on the Darling Downs using the APSIM crop simulation model , 2008 .

[55]  R. M. Kelly,et al.  Application of Probability Analysis to Assess Nitrogen Supply to Grain Crops in Northern Australia , 2004, Precision Agriculture.