Hypertree width and related hypergraph invariants

We study the notion of hypertree width of hypergraphs. We prove that, up to a constant factor, hypertree width is the same as a number of other hypergraph invariants that resemble graph invariants such as bramble number, branch width, linkedness, and the minimum number of cops required to win Seymour and Thomas's robber and cops game.

[1]  Isolde Adler,et al.  Marshals, monotone marshals, and hypertree‐width , 2004, J. Graph Theory.

[2]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[3]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[4]  Georg Gottlob,et al.  Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width , 2001, PODS '01.

[5]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[6]  Marc Gyssens,et al.  A Unified Theory of Structural Tractability for Constraint Satisfaction and Spread Cut Decomposition , 2005, IJCAI.

[7]  Dániel Marx,et al.  Constraint solving via fractional edge covers , 2006, SODA '06.

[8]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[9]  Moshe Lewenstein,et al.  Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms: Preface , 2006, SODA 2006.

[10]  B. Reed Surveys in Combinatorics, 1997: Tree Width and Tangles: A New Connectivity Measure and Some Applications , 1997 .

[11]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[12]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[13]  Georg Gottlob,et al.  Hypertree Decompositions: Structure, Algorithms, and Applications , 2005, WG.

[14]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2005, TALG.