Pool boiling heat flux of ammonia refrigerant in the presence of iron oxide nanoparticles: A molecular dynamics approach

[1]  H. Ahn,et al.  A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger , 2021 .

[2]  Z. Said,et al.  Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids , 2021, Physics Reports.

[3]  Seyed Amin Bagherzadeh,et al.  Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: An experimental and numerical study , 2021 .

[4]  A. Abdollahi,et al.  Effect of concentration and sedimentation on boiling heat transfer coefficient of GNPs-SiO2/deionized water hybrid Nanofluid: An experimental investigation , 2021 .

[5]  Aysan Shahsavar Goldanlou,et al.  Effects of surfactant on thermal conductivity of aqueous silica nanofluids , 2020 .

[6]  A. Karimipour,et al.  Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection , 2020 .

[7]  Mostafa Safdari Shadloo,et al.  A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption , 2020, Journal of Thermal Analysis and Calorimetry.

[8]  Mostafa Safdari Shadloo,et al.  Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations , 2020 .

[9]  A. Hussein,et al.  Experimental studies of flow boiling heat transfer by using nanofluids , 2019, Journal of Thermal Analysis and Calorimetry.

[10]  D. Toghraie,et al.  Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses , 2019, Journal of Molecular Liquids.

[11]  A. Karimipour,et al.  Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid , 2018 .

[12]  Sunil Kumar Effect of applied force and atomic organization of copper on its adhesion to a graphene substrate , 2017 .

[13]  Sami I. Attia,et al.  The influence of condenser cooling water temperature on the thermal efficiency of a nuclear power plant , 2015 .

[14]  Tobias Brink,et al.  Solid-state amorphization of Cu nanolayers embedded in aCu64Zr36glass , 2015, 1505.01380.

[15]  Mohammad Mohsen Sarafraz,et al.  Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger , 2014 .

[16]  M. Nasr Esfahany,et al.  Experimental investigation of pool boiling of Fe3O4/ethylene glycol–water nanofluid in electric field , 2012 .

[17]  A. Chandra,et al.  A first principles molecular dynamics study of lithium atom solvation in binary liquid mixture of water and ammonia: structural, electronic, and dynamical properties. , 2011, The Journal of chemical physics.

[18]  Ching-Jenq Ho,et al.  An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid , 2010 .

[19]  Mahmood Yaghoubi,et al.  Influence of channel geometry on the performance of a counter flow microchannel heat exchanger , 2009 .

[20]  A. Behzadmehr,et al.  Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube , 2008 .

[21]  C. T. Nguyen,et al.  Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties , 2006 .

[22]  Yulong Ding,et al.  Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids , 2005 .

[23]  Liu Hui,et al.  Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid , 2004 .

[24]  Soon-Heung Chang,et al.  Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool , 2004 .

[25]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[26]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[27]  K. Nakatsuka,et al.  The magnetic fluid for heat transfer applications , 2002 .

[28]  Q. Spreiter,et al.  Classical Molecular Dynamics Simulation with the Velocity Verlet Algorithm at Strong External Magnetic Fields , 1999 .

[29]  S. Kamiyama,et al.  Boiling two-phase flows of magnetic fluid in a non-uniform magnetic field , 1995 .

[30]  Akira Inoue,et al.  Nucleate pool boiling heat transfer of magnetic fluid in a magnetic field , 1993 .

[31]  V. Bashtovoi,et al.  Boiling heat transfer in magnetic fluids , 1993 .

[32]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[33]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[34]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[35]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[36]  H. Chatley Cohesion , 1921, Nature.

[37]  F. Lezsovits,et al.  Boiling heat transfer of nanofluids: A review of recent studies , 2019, Thermal Science.

[38]  Davood Toghraie,et al.  Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows , 2018 .

[39]  P. F. Vassallo,et al.  Pool boiling heat transfer experiments in silica–water nano-fluids , 2004 .