Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation

Abstract This paper is concerned with obtaining approximate solution and approximate derivatives up to order k of the solution for neutral kth-order Volterra integro-differential equation with a regular kernel. The solution of the equation, for analytic data, is smooth on the entire interval of integration. The Legendre collocation discretization is proposed for this equation. In the present paper, we restate the initial conditions as equivalent integral equations instead of integrating two sides of the equation and provide a rigorous error analysis which justifies that not only the errors of approximate solution but also the errors of approximate derivatives up to order k of the solution decay exponentially in L 2 norm and L ∞ norm. Numerical results are presented to demonstrate the effectiveness of the spectral method.

[1]  M. Tarang Stability of the spline collocation method for second order Volterra integro‐differential equations 1 , 2004 .

[2]  Giovanni Monegato,et al.  Nyström interpolants based on zeros of Laguerre polynomials for some Weiner-Hopf equations , 1997 .

[3]  Yanping Chen,et al.  A Spectral Method for Neutral Volterra Integro-Differential Equation with Weakly Singular Kernel , 2013 .

[4]  te Herman Riele,et al.  Linear multistep methods for Volterra integral and integro-differential equations , 1983 .

[5]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[6]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[7]  Yanping Chen,et al.  Legendre Spectral Collocation Methods for Pantograph Volterra Delay-Integro-Differential Equations , 2012, J. Sci. Comput..

[8]  Mehmet Sezer,et al.  Bessel polynomial solutions of high-order linear Volterra integro-differential equations , 2011, Comput. Math. Appl..

[9]  Jie Shen,et al.  Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval , 2000, Numerische Mathematik.

[10]  Hermann Brunner,et al.  Polynomial spline collocation methods for the nonlinear basset equation , 1989 .

[11]  Edris Rawashdeh,et al.  Polynomial spline collocation methods for second-order Volterra integrodifferential equations , 2004, Int. J. Math. Math. Sci..

[12]  Hermann Brunner,et al.  Polynomial Spline Collocation Methods for Volterra Integrodifferential Equations with Weakly Singular Kernels , 1986 .

[13]  A. Goldfine Taylor series methods for the solution of Volterra integral and integro-differential equations , 1977 .

[14]  Tang,et al.  ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS , 2008 .

[15]  Ishtiaq Ali,et al.  Spectral methods for pantograph-type differential and integral equations with multiple delays , 2009 .

[16]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[17]  Ivan P. Gavrilyuk,et al.  Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..

[18]  Wei Yuan,et al.  The numerical analysis of implicit Runge-Kutta methods for a certain nonlinear integro-differential equation , 1990 .

[19]  A. Makroglou Convergence of a block-by-block method for nonlinear Volterra integro-differential equations , 1980 .

[20]  Hermann Brunner,et al.  Implicit Runge-Kutta Methods of Optimal Order for Volterra Integro-Differential Equations , 1984 .

[21]  Peter Linz,et al.  Linear Multistep Methods for Volterra Integro-Differential Equations , 1969, JACM.

[22]  S. McKee Cyclic Multistep Methods for Solving Volterra Integro-Differential Equations , 1979 .

[23]  Mehmet Sezer,et al.  The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials , 2000, Appl. Math. Comput..

[24]  H. Brunner,et al.  A SPECTRAL METHOD FOR PANTOGRAPH-TYPE DELAY DIFFERENTIAL EQUATIONS AND ITS CONVERGENCE ANALYSIS * , 2009 .

[25]  A. Makroglou A block-by-block method for Volterra integro-differential equations with weakly-singular kernel , 1981 .

[26]  Hermann Brunner,et al.  Piecewise Polynomial Collocation Methods for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels , 2001, SIAM J. Numer. Anal..

[27]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[28]  Yanping Chen,et al.  Convergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations , 2011 .

[29]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..

[30]  Yingjun Jiang,et al.  On spectral methods for Volterra-type integro-differential equations , 2009 .

[31]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[32]  Weiming Wang,et al.  An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equation with mechanization , 2006, Appl. Math. Comput..

[33]  Callocation methods for volterra integrodifferential equations with singular kernels , 1980 .

[34]  Khosrow Maleknejad,et al.  Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations , 2003, Appl. Math. Comput..

[35]  Jingtang Ma,et al.  Spectral collocation methods for Volterra-integro differential equations with noncompact kernels , 2013, J. Comput. Appl. Math..

[36]  Jie Shen,et al.  Stable and Efficient Spectral Methods in Unbounded Domains Using Laguerre Functions , 2000, SIAM J. Numer. Anal..

[37]  Jingtang Ma,et al.  Fully discretized collocation methods for nonlinear singular Volterra integral equations , 2013, J. Comput. Appl. Math..

[38]  Yanping Chen,et al.  Convergence Analysis of the Spectral Methods for Weakly Singular Volterra Integro-Differential Equations with Smooth Solutions , 2012 .

[39]  Yanping Chen,et al.  A NOTE ON JACOBI SPECTRAL-COLLOCATION METHODS FOR WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS WITH SMOOTH SOLUTIONS * , 2013 .

[40]  Yanping Chen,et al.  Spectral methods for weakly singular Volterra integral equations with smooth solutions , 2009, J. Comput. Appl. Math..

[41]  Paul Nevai,et al.  Mean convergence of Lagrange interpolation. III , 1984 .

[42]  Giuseppe Mastroianni,et al.  Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey , 2001 .