Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering

A bstractDetermining the type of the neutrino mass ordering (normal versus inverted) is one of the most important open questions in neutrino physics. In this paper we clarify the statistical interpretation of sensitivity calculations for this measurement. We employ standard frequentist methods of hypothesis testing in order to precisely define terms like the median sensitivity of an experiment. We consider a test statistic T which in a certain limit will be normal distributed. We show that the median sensitivity in this limit is very close to standard sensitivities based on Δχ2 values from a data set without statistical fluctuations, such as widely used in the literature. Furthermore, we perform an explicit Monte Carlo simulation of the INO, JUNO, LBNE, NOνA, and PINGU experiments in order to verify the validity of the Gaussian limit, and provide a comparison of the expected sensitivities for those experiments.

[1]  R. Gandhi,et al.  Mass hierarchy determination via future atmospheric neutrino detectors , 2007, 0707.1723.

[2]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[3]  S. Petcov,et al.  Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment , 2003, hep-ph/0306017.

[4]  M. Ribordy,et al.  Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA , 2013, 1303.0758.

[5]  Jun Cao,et al.  Determination of the neutrino mass hierarchy at an intermediate baseline , 2008, 0807.3203.

[6]  R. Wilson,et al.  Baseline Optimization for the Measurement of CP Violation, Mass Hierarchy, and $\theta_{23}$ Octant in a Long-Baseline Neutrino Oscillation Experiment , 2013, 1311.0212.

[7]  Three-neutrino oscillations of atmospheric neutrinos, θ13, neutrino mass hierarchy and iron magnetized detectors , 2004, hep-ph/0406096.

[8]  M. Lindner,et al.  First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments , 2009, 0907.1896.

[9]  R. Patterson,et al.  The NOvA Experiment: Status and Outlook , 2012, 1209.0716.

[10]  M. Bañuls,et al.  Medium effects for terrestrial and atmospheric neutrino oscillations , 2001 .

[11]  J. Evslin,et al.  Confidence in a neutrino mass hierarchy determination , 2013 .

[12]  Manfred Lindner,et al.  New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: (General Long Baseline Experiment Simulator) , 2007, Comput. Phys. Commun..

[13]  P. Vogel,et al.  Mass hierarchy resolution in reactor anti-neutrino experiments: Parameter degeneracies and detector energy response , 2012, 1208.1551.

[14]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[15]  S. Petcov,et al.  The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments , 2001, hep-ph/0112074.

[16]  S. Mikheyev,et al.  Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos , 1986 .

[17]  O. Mena,et al.  Exploring the Earth matter effect with atmospheric neutrinos in ice , 2012, 1212.2238.

[18]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[19]  L. Wen,et al.  Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos , 2009, 0901.2976.

[20]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[21]  S. Petcov,et al.  Neutrino mass hierarchy determination using reactor antineutrinos , 2010, 1011.1646.

[22]  M. Blennow On the Bayesian approach to neutrino mass ordering , 2013, 1311.3183.

[23]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[24]  K. Hagiwara,et al.  Determination of mass hierarchy with medium baseline reactor neutrino experiments , 2012, 1210.8141.

[25]  Sandip Pakvasa,et al.  Matter effects on three-neutrino oscillations , 1980 .

[26]  E. Fernandez-Martinez,et al.  Gain fractions of future neutrino oscillation facilities over T2K and NOvA , 2013, 1303.0003.

[27]  R.Miyamoto,et al.  A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac , 2013, 1309.7022.

[28]  C. Zhang,et al.  A Second Detector Focusing on the Second Oscillation Maximum at an Off-axis Location to Enhance the Mass Hierarchy Discovery Potential in LBNE10 , 2013, 1307.7406.

[29]  C. Bromberg,et al.  Scientific Opportunities with the Long-Baseline Neutrino Experiment , 2013 .

[30]  K. Whisnant,et al.  Determination of the pattern of neutrino masses at a neutrino factory , 2000, hep-ph/0004208.

[31]  T. Schwetz,et al.  Global fit to three neutrino mixing: critical look at present precision , 2012, 1209.3023.

[32]  C. Zhang,et al.  Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy , 2012, 1210.3651.

[33]  M. Murthy,et al.  Question of hierarchy: Matter effects with atmospheric neutrinos and antineutrinos , 2004, hep-ph/0407336.

[34]  T. Schwetz,et al.  Determination of the neutrino mass ordering by combining PINGU and Daya Bay II , 2013, 1306.3988.

[35]  G. Giordano,et al.  Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters , 2010, 1008.4783.

[36]  Irvine,et al.  The T2K Experiment , 2009, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[37]  Lisi,et al.  Tests of three-flavor mixing in long-baseline neutrino oscillation experiments. , 1996, Physical review. D, Particles and fields.

[38]  M. Sioli,et al.  CP violation and mass hierarchy at medium baselines in the large θ13 era , 2012, 1209.5010.

[39]  S. Petcov Diffractive-Like (or Parametric-Resonance-Like?) Enhancement of the Earth (Day-Night) Effect for Solar Neutrinos Crossing the Earth Core , 1998, hep-ph/9805262.

[40]  L. Labarga,et al.  Physics reach of CERN-based SuperBeam neutrino oscillation experiments , 2012, 1206.0475.

[41]  Manfred Lindner,et al.  Simulation of long-baseline neutrino oscillation experiments with GLoBES: (General Long Baseline Experiment Simulator) , 2005, Comput. Phys. Commun..

[42]  A. Samanta The mass hierarchy with atmospheric neutrinos at INO , 2006, hep-ph/0610196.

[43]  D. Franco,et al.  Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors , 2013, 1301.4332.

[44]  A. M. Guler,et al.  Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO) , 2012 .

[45]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[46]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[47]  T. Schwetz,et al.  Identifying the neutrino mass ordering with INO and NOvA , 2012, 1203.3388.

[48]  E. Lisi,et al.  Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events , 2013, 1309.1638.

[49]  P. Huber,et al.  Physics performance of a low-luminosity low energy neutrino factory. , 2013, Physical review letters.

[50]  Detecting atmospheric neutrino oscillations in the ATLAS detector at CERN , 2007, 0705.2595.

[51]  J. Bian,et al.  The NOvA Experiment: Overview and Status , 2013, 1309.7898.

[52]  Jun Cao,et al.  Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos , 2013, 1303.6733.

[53]  The HLMA project: determination of high Δm2 LMA mixing parameters and constraint on |Ue3| with a new reactor neutrino experiment , 2002, hep-ex/0203013.

[54]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[55]  S. Prakash,et al.  Exploring the three flavor effects with future superbeams using liquid argon detectors , 2013, 1304.3251.

[56]  Determining the neutrino mass hierarchy with atmospheric neutrinos , 2005, hep-ph/0511277.

[57]  W. Winter Neutrino mass hierarchy determination with IceCube-PINGU , 2013, 1305.5539.

[58]  On the Oscillation Length Resonance in the Transitions of Solar and Atmospheric Neutrinos Crossing the Earth Core , 1998, hep-ph/9811205.

[59]  T. Kuo,et al.  Neutrino Oscillations in Matter , 1989 .

[60]  R. Wilson,et al.  Baseline optimization for the measurement of CP violation and mass hierarchy in a long-baseline neutrino oscillation experiment , 2013 .

[61]  Mattias Blennow,et al.  Neutrino oscillation parameter sampling with MonteCUBES , 2009, Comput. Phys. Commun..

[62]  Testing matter effects in very long baseline neutrino oscillation experiments , 1999, hep-ph/9912457.

[63]  S. Prakash,et al.  Potential of optimized NOνA for large θ13 & combined performance with a LArTPC & T2K , 2012, Journal of High Energy Physics.

[64]  A. Hourlier,et al.  Reactor ν̄e disappearance in the Double Chooz experiment , 2012, 1207.6632.

[65]  Animesh Chatterjee,et al.  Configuring the Long-Baseline Neutrino Experiment , 2013, 1307.2519.

[66]  S. Goswami,et al.  Synergies between neutrino oscillation experiments: an ‘adequate’ configuration for LBNO , 2013, 1308.5979.

[67]  O. Mena,et al.  Neutrino mass hierarchy extraction using atmospheric neutrinos in ice , 2008, 0803.3044.

[68]  A. Rubbia,et al.  An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline superbeam for large θ13 , 2011, 1109.6526.

[69]  Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the earth , 1998, hep-ph/9805272.

[70]  C. Rott,et al.  A novel approach to study atmospheric neutrino oscillation , 2013, 1309.3176.

[71]  S. Choubey,et al.  Measuring the mass hierarchy with muon and hadron events in atmospheric neutrino experiments , 2013, 1306.1423.

[72]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[73]  E. al.,et al.  NOvA Proposal to Build a 30 Kiloton Off-Axis Detector to Study Neutrino Oscillations in the Fermilab NuMI Beamline , 2005, hep-ex/0503053.

[74]  S. Choubey,et al.  Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments , 2012, Journal of High Energy Physics.

[75]  S. Prakash,et al.  Potential of optimized NOνA for large θ13 and combined performance with a LArTPC and T2K , 2013 .

[76]  J. Napolitano,et al.  Neutrino mass hierarchy determination and other physics potential of medium-baseline reactor neutrino oscillation experiments , 2013, 1307.7419.

[77]  S. Pascoli,et al.  Understanding the performance of the low energy neutrino factory: the dependence on baseline distance and stored-muon energy , 2012, 1201.6299.

[78]  M. Hartz,et al.  Evidence of electron neutrino appearance in a muon neutrino beam , 2013, 1304.0841.

[79]  S. Pascoli,et al.  A Comparative Study of Long-Baseline Superbeams within LAGUNA for large $\theta_{13}$ , 2012, 1206.4038.

[80]  I. Stancu,et al.  The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups , 2011, 1110.6249.

[81]  C. Bromberg,et al.  NOvA: Proposal to Build a 30 Kiloton Off-Axis Detector to Study $\nu_{\mu} \to \nu_e$ Oscillations in the NuMI Beamline , 2004 .

[82]  A. Yu. Smirnov,et al.  Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors , 2012, 1205.7071.