Fabrication of all diamond scanning probes for nanoscale magnetometry.

The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1-2 μm length) on a thin (<1 μm) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity (ηAC≈50±20nT/Hz). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes.

[1]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[2]  L. Childress,et al.  Supporting Online Material for , 2006 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  F. Jelezko,et al.  Creation efficiency of nitrogen-vacancy centres in diamond , 2010 .

[5]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[6]  M. Ganzhorn,et al.  Photonic nano-structures on (111)-oriented diamond , 2014, 1403.6063.

[7]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[8]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[9]  J. Tetienne,et al.  Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution , 2015, 1503.00705.

[10]  M. Markham,et al.  Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.

[11]  J Wrachtrup,et al.  High-dynamic-range imaging of nanoscale magnetic fields using optimal control of a single qubit. , 2013, Physical review letters.

[12]  F. Reinhard,et al.  Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. , 2014, Nano letters.

[13]  J. Twamley,et al.  Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. , 2010, Nature nanotechnology.

[14]  J. Tetienne,et al.  The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry , 2014, Nature Communications.

[15]  Paola Cappellaro,et al.  Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond , 2014, 1407.3134.

[16]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[17]  R. Birringer,et al.  Nanoscale rheometry of viscoelastic soft matter by oscillating field magneto-optical transmission using ferromagnetic nanorod colloidal probes , 2014 .

[18]  V. Letokhov,et al.  Nanometer-resolution scanning optical microscope with resonance excitation of the fluorescence of the samples from a single-atom excited center , 1996 .

[19]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[20]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[21]  E. Hu,et al.  Increased negatively charged nitrogen-vacancy centers in fluorinated diamond , 2013 .

[22]  Frank Ludwig,et al.  Direct protein detection in the sample solution by monitoring rotational dynamics of nickel nanorods. , 2014, Small.

[23]  J. Tetienne,et al.  Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope , 2014, Science.

[24]  F. Jelezko,et al.  Increasing the creation yield of shallow single defects in diamond by surface plasma treatment , 2013 .

[25]  Christoph Pauly,et al.  Nanoimplantation and Purcell enhancement of single NV centers in photonic crystal cavities in diamond , 2015, 1503.05666.

[26]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[27]  P. Doppelt,et al.  Etch‐pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment , 2012 .

[28]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[29]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[30]  D. J. Twitchen,et al.  Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition , 2009 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  B. Myers,et al.  Two-Dimensional Nanoscale Imaging of Gadolinium Spins via Scanning Probe Relaxometry with a Single Spin in Diamond , 2014, 1409.2422.

[33]  R. Birringer,et al.  Magnetic-field-dependent optical transmission of nickel nanorod colloidal dispersions , 2009 .

[34]  M. Ganzhorn,et al.  Nanoscale microwave imaging with a single electron spin in diamond , 2015, 1508.02719.

[35]  C. Degen,et al.  Facile Fabrication of Single‐Crystal‐Diamond Nanostructures with Ultrahigh Aspect Ratio , 2013, Advanced materials.

[36]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[37]  R. Hoekstra,et al.  Microtrenching resulting from specular reflection during chlorine etching of silicon , 1998 .

[38]  Lee C. Bassett,et al.  Engineering shallow spins in diamond with nitrogen delta-doping , 2012 .

[39]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[40]  E Neu,et al.  Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. , 2015, Nature nanotechnology.

[41]  A. Gossard,et al.  Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.

[42]  Three-dimensional localization of spins in diamond using 12C implantation , 2014, 1405.7352.

[43]  M. Konuma,et al.  Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond , 2015, 1507.00890.

[44]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[45]  Single defect center scanning near-field optical microscopy on graphene. , 2013, Nano letters.

[46]  D. D. Awschalom,et al.  Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K , 2012, 1201.4420.

[47]  R. Schoenfeld,et al.  Real time magnetic field sensing and imaging using a single spin in diamond. , 2010, Physical review letters.

[48]  F. Omnès,et al.  Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching , 2009 .

[49]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[50]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[51]  Viatcheslav V. Dobrovitski,et al.  Supporting Information for “ Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond ” , 2013 .

[52]  R. Birringer,et al.  Rotational diffusion of magnetic nickel nanorods in colloidal dispersions , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.