The One-Dimensional Case

[1]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[2]  N. S. Manton,et al.  An effective Lagrangian for solitons , 1979 .

[3]  P. Kevrekidis,et al.  Instabilities and bifurcations of nonlinear impurity modes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Kim Ø. Rasmussen,et al.  THE DISCRETE NONLINEAR SCHRÖDINGER EQUATION: A SURVEY OF RECENT RESULTS , 2001 .

[5]  S. Aubry,et al.  Existence and stability of quasiperiodic breathers in the discrete nonlinear Schrödinger equation , 1997 .

[6]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[7]  Page,et al.  Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems. , 1990, Physical review. B, Condensed matter.

[8]  Yuri S. Kivshar,et al.  Internal Modes of Solitary Waves , 1998 .

[9]  Keith Promislow,et al.  The Mechanism of the Polarizational Mode Instability in Birefringent Fiber Optics , 2000, SIAM J. Math. Anal..

[10]  Dmitry E. Pelinovsky,et al.  Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Todd Kapitula,et al.  Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems , 2004 .

[12]  H. Feshbach,et al.  Finite Difference Equations , 1959 .

[13]  F. Nabarro Dislocations in a simple cubic lattice , 1947 .

[14]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[15]  J. C. van der Meer,et al.  Hamiltonian Hopf bifurcation with symmetry , 1990 .

[16]  Todd Kapitula,et al.  The Evans function and generalized Melnikov integrals , 1999 .

[17]  P. Kevrekidis,et al.  Stability of waves in discrete systems , 2001 .

[18]  M. Grillakis,et al.  Linearized instability for nonlinear Schr?odinger and Klein-Gordon equations , 1988 .

[19]  Bishop,et al.  Perturbation theories of a discrete, integrable nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  P. Kevrekidis,et al.  Linear stability of perturbed Hamiltonian systems: theory and a case example , 2004 .

[21]  Todd Kapitula,et al.  Stability of waves in pertubed Hamiltonian sysems , 2001 .

[22]  Y. Kawaguchi,et al.  Splitting Instability of a Multiply Charged Vortex in a Bose-Einstein Condensate , 2004, cond-mat/0402553.

[23]  Avinash Khare,et al.  Solitary wave interactions in dispersive equations using Manton's approach. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[25]  Aubry,et al.  Growth and decay of discrete nonlinear Schrodinger breathers interacting with internal modes or standing-wave phonons , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Y. Kivshar,et al.  Peierls-Nabarro potential barrier for highly localized nonlinear modes. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Spatschek,et al.  Existence of solitary solutions in nonlinear chains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  D. Skryabin,et al.  Energy of internal modes of nonlinear waves and complex frequencies due to symmetry breaking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Instabilities of vortices in a binary mixture of trapped Bose-Einstein condensates : role of collective excitations with positive and negative energies , 2000, cond-mat/0003041.

[30]  Dmitry E. Pelinovsky,et al.  Stability of discrete solitons in nonlinear Schrödinger lattices , 2005 .

[31]  Christopher K. R. T. Jones,et al.  Instability of standing waves for non-linear Schrödinger-type equations , 1988, Ergodic Theory and Dynamical Systems.

[32]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[33]  Kaup Dj,et al.  Perturbation theory for solitons in optical fibers. , 1990 .

[34]  Panayotis G. Kevrekidis,et al.  Asymptotic calculation of discrete non-linear wave interactions , 2005, Math. Comput. Simul..

[35]  Mark J. Ablowitz,et al.  Numerical Chaos, Symplectic Integrators, and Exponentially Small Splitting Distances , 1993 .

[36]  R. Peierls The size of a dislocation , 1940 .

[37]  B A Malomed,et al.  Stability of multiple pulses in discrete systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Boris A. Malomed,et al.  Soliton dynamics in the discrete nonlinear Schrödinger equation , 1996 .

[39]  Y. Kivshar,et al.  Kink’s internal modes in the Frenkel-Kontorova model , 1997 .

[40]  A R Bishop,et al.  Twisted localized modes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Todd Kapitula,et al.  Existence and stability of standing hole solutions to complex Ginzburg-Landau equations , 1999, patt-sol/9902002.

[42]  Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation , 1991 .

[43]  P. Kevrekidis,et al.  Soliton internal mode bifurcations: pure power law? , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[45]  V. Karpman,et al.  A perturbational approach to the two-soliton systems , 1981 .

[46]  Kevrekidis Pg Multipulses in discrete Hamiltonian nonlinear systems. , 2001 .

[47]  和達 三樹 M. J. Ablowitz and H. Segur: Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981, x+425ページ, 23.5×16.5cm, $54.40 (SIAM Studies in Applied Mathematics). , 1982 .

[48]  Boris A. Malomed,et al.  Chapter 2 - Variational methods in nonlinear fiber optics and related fields , 2002 .

[49]  D. J. Kaup,et al.  Quantitative measurement of variational approximations , 2007 .

[50]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[51]  Y. A. Li,et al.  Structural stability of non-ground state traveling waves of coupled nonlinear Schro , 1998 .

[52]  B. A. Malomed,et al.  Discrete solitons in nonlinear Schrodinger lattices with a power-law nonlinearity , 2009 .

[53]  V. Karpman,et al.  A perturbation theory for soliton systems , 1981 .

[54]  G. L. Alfimov,et al.  On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation , 2004 .

[55]  A. Sievers,et al.  Intrinsic localized modes in anharmonic crystals. , 1988, Physical review letters.

[56]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[57]  Andrey Kobyakov,et al.  Stability of strongly localized excitations in discrete media with cubic nonlinearity , 1998 .