The nucleolus directly regulates p53 export and degradation

Nucleoli directly regulate p53 export and degradation rather than simply sequestering p53 regulatory factors.

[1]  A. Levine,et al.  Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Laín,et al.  Selective induction of apoptosis by leptomycin B in keratinocytes expressing HPV oncogenes , 2007, International journal of cancer.

[3]  A. Levine,et al.  P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Latonen,et al.  Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability , 2011, Oncogene.

[5]  R. McKay,et al.  A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin , 2005, The Journal of cell biology.

[6]  B. K. Park,et al.  MDM2 regulates dihydrofolate reductase activity through monoubiquitination. , 2008, Cancer research.

[7]  K. Smetana,et al.  ISOLATION OF NUCLEOLI. , 1963 .

[8]  M. Ljungman Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. , 2000, Neoplasia.

[9]  M. Dai,et al.  Ribosomal Protein L23 Activates p53 by Inhibiting MDM2 Function in Response to Ribosomal Perturbation but Not to Translation Inhibition , 2004, Molecular and Cellular Biology.

[10]  M. Kubbutat,et al.  Regulation of HDM2 activity by the ribosomal protein L11. , 2003, Cancer cell.

[11]  C. Maki,et al.  The MDM2 RING-finger domain is required to promote p53 nuclear export , 2000, Nature Cell Biology.

[12]  M. Dundr,et al.  The moving parts of the nucleolus , 2005, Histochemistry and Cell Biology.

[13]  Rosa Bernardi,et al.  PML regulates p53 stability by sequestering Mdm2 to the nucleolus , 2004, Nature Cell Biology.

[14]  U. Moll,et al.  The Role of Ubiquitination in the Direct Mitochondrial Death Program of p53 , 2007, Cell cycle.

[15]  Sui Huang,et al.  Nucleolar Components Involved in Ribosome Biogenesis Cycle between the Nucleolus and Nucleoplasm in Interphase Cells , 2001, The Journal of cell biology.

[16]  D. Xirodimas,et al.  Novel substrates and functions for the ubiquitin-like molecule NEDD8. , 2008, Biochemical Society transactions.

[17]  A. Lamond,et al.  snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. , 2001, Journal of cell science.

[18]  K. Vousden,et al.  Cancer: Guarding the guardian? , 2004, Nature.

[19]  M. Boyd,et al.  Regulation of p53 and MDM2 Activity by MTBP , 2005, Molecular and Cellular Biology.

[20]  H. O’Hagan,et al.  Nuclear accumulation of p53 following inhibition of transcription is not due to diminished levels of MDM2 , 2004, Oncogene.

[21]  D. Hernandez-Verdun,et al.  In nucleoli, the steady state of nucleolar proteins is leptomycin B‐sensitive , 2008, Biology of the cell.

[22]  p53 is covalently linked to 5.8S rRNA. , 1992, Molecular and cellular biology.

[23]  Minoru Yoshida,et al.  CRM1 Is an Export Receptor for Leucine-Rich Nuclear Export Signals , 1997, Cell.

[24]  P. Chumakov,et al.  Activation of p53-mediated cell cycle checkpoint in response to micronuclei formation. , 1998, Journal of cell science.

[25]  Matthias Mann,et al.  Analysis of Nucleolar Protein Dynamics Reveals the Nuclear Degradation of Ribosomal Proteins , 2007, Current Biology.

[26]  K. Tsai,et al.  An intact HDM2 RING-finger domain is required for nuclear exclusion of p53 , 2000, Nature Cell Biology.

[27]  J. D. Weber,et al.  The ARF/p53 pathway. , 2000, Current opinion in genetics & development.

[28]  T. Allio,et al.  Ribosomal Protein L11 Negatively Regulates Oncoprotein MDM2 and Mediates a p53-Dependent Ribosomal-Stress Checkpoint Pathway , 2003, Molecular and Cellular Biology.

[29]  Yves Pommier,et al.  γH2AX and cancer , 2008, Nature Reviews Cancer.

[30]  M. Olson,et al.  Sensing Cellular Stress: Another New Function for the Nucleolus? , 2004, Science's STKE.

[31]  K. Bhat,et al.  Essential role of ribosomal protein L11 in mediating growth inhibition‐induced p53 activation , 2004, The EMBO journal.

[32]  M. Dai,et al.  Inhibition of MDM2-mediated p53 Ubiquitination and Degradation by Ribosomal Protein L5* , 2004, Journal of Biological Chemistry.

[33]  D. Lane,et al.  Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo , 2001, Oncogene.

[34]  B. Clurman,et al.  A Nucleolar Isoform of the Fbw7 Ubiquitin Ligase Regulates c-Myc and Cell Size , 2004, Current Biology.

[35]  T. Lawlor,et al.  Re-examination of the mutagenicity of ethylene glycol monobutyl ether to Salmonella tester strain TA97a. , 1996, Mutation research.

[36]  L. Ottaggio,et al.  p53 accumulates in micronuclei after treatment with a DNA breaking chemical, methylnitrosourea, and with the spindle poison, vinblastine. , 1996, Mutation research.

[37]  A. Levine,et al.  The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes , 1994, Molecular and cellular biology.

[38]  A. Dejean,et al.  C-terminal modifications regulate MDM2 dissociation and nuclear export of p53 , 2007, Nature Cell Biology.

[39]  C. Lehner,et al.  Major nucleolar proteins shuttle between nucleus and cytoplasm , 1989, Cell.

[40]  M. Kubbutat,et al.  Identification of a cryptic nucleolar-localization signal in MDM2 , 2000, Nature Cell Biology.

[41]  D. Hernandez-Verdun Nucleolus: from structure to dynamics , 2005, Histochemistry and Cell Biology.

[42]  Pier Giuseppe Pelicci,et al.  Nucleophosmin regulates the stability and transcriptional activity of p53 , 2002, Nature Cell Biology.

[43]  Leena Latonen,et al.  Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. , 2004, Cancer cell.

[44]  J. Sleeman A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus , 2007, Journal of Cell Science.

[45]  C. Paul,et al.  PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. , 2004, Molecular cell.

[46]  E. Lane,et al.  An inhibitor of nuclear export activates the p53 response and induces the localization of HDM2 and p53 to U1A-positive nuclear bodies associated with the PODs. , 1999, Experimental cell research.

[47]  Geng-Hung Liu,et al.  Regulation of nucleolar signalling to p53 through NEDDylation of L11 , 2009, EMBO reports.

[48]  George H Patterson,et al.  Photobleaching and photoactivation: following protein dynamics in living cells. , 2003, Nature cell biology.

[49]  J. Hiscox,et al.  Nucleolar targeting: the hub of the matter , 2009, EMBO reports.

[50]  K. Itahana,et al.  Inhibition of HDM2 and Activation of p53 by Ribosomal Protein L23 , 2004, Molecular and Cellular Biology.

[51]  Wei Gu,et al.  p53 ubiquitination: Mdm2 and beyond. , 2006, Molecular cell.

[52]  J. Marine,et al.  Mdm2-mediated ubiquitylation: p53 and beyond , 2010, Cell Death and Differentiation.

[53]  L. Gunaratnam,et al.  Regulation of ubiquitin ligase dynamics by the nucleolus , 2005, The Journal of cell biology.

[54]  P. Marynen,et al.  The Dark Side of EGFP: Defective Polyubiquitination , 2006, PloS one.

[55]  H. O’Hagan,et al.  Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress. , 2001, Journal of cell science.

[56]  Tom Misteli,et al.  Potential Roles for Ubiquitin and the Proteasome during Ribosome Biogenesis , 2006, Molecular and Cellular Biology.

[57]  B. Fontoura,et al.  Cytoplasmic p53 polypeptide is associated with ribosomes , 1997, Molecular and cellular biology.

[58]  Sui Huang,et al.  Components of U3 snoRNA-containing complexes shuttle between nuclei and the cytoplasm and differentially localize in nucleoli: implications for assembly and function. , 2003, Molecular biology of the cell.

[59]  A. Levine,et al.  Nuclear Export Is Required for Degradation of Endogenous p53 by MDM2 and Human Papillomavirus E6 , 1998, Molecular and Cellular Biology.

[60]  Muyang Li,et al.  Mono- Versus Polyubiquitination: Differential Control of p53 Fate by Mdm2 , 2003, Science.

[61]  I. Grummt,et al.  Cellular Stress and Nucleolar Function , 2005, Cell cycle.

[62]  D. Hernandez-Verdun,et al.  Behaviour of nucleolar proteins in nuclei lacking ribosomal genes. A study by confocal laser scanning microscopy. , 1991, Journal of cell science.

[63]  R. Finch,et al.  ATP depletion affects NPM translocation and exportation of rRNA from nuclei. , 1996, Biochemical and biophysical research communications.

[64]  J. Milner,et al.  Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses , 2003, The EMBO journal.