Conflict monitoring and anterior cingulate cortex: an update

[1]  M. Posner The Cognitive Neuroscience of Attention , 2020 .

[2]  K Zilles,et al.  A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields , 2004, Neuroscience.

[3]  S. Segalowitz,et al.  Error detection in patients with lesions to the medial prefrontal cortex: an ERP study , 2004, Neuropsychologia.

[4]  Cameron S. Carter,et al.  Errors without conflict: Implications for performance monitoring theories of anterior cingulate cortex , 2004, Brain and Cognition.

[5]  Jonathan D. Cohen,et al.  The neural basis of error detection: conflict monitoring and the error-related negativity. , 2004, Psychological review.

[6]  M. Walton,et al.  Action sets and decisions in the medial frontal cortex , 2004, Trends in Cognitive Sciences.

[7]  D. Tucker,et al.  Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation , 2004, Clinical Neurophysiology.

[8]  Clay B. Holroyd,et al.  Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. , 2004, Cerebral cortex.

[9]  Clay B. Holroyd,et al.  Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals , 2004, Nature Neuroscience.

[10]  Jonathan D. Cohen,et al.  Anterior Cingulate Conflict Monitoring and Adjustments in Control , 2004, Science.

[11]  David Badre,et al.  Selection, Integration, and Conflict Monitoring Assessing the Nature and Generality of Prefrontal Cognitive Control Mechanisms , 2004, Neuron.

[12]  Aziz M. Ulug,et al.  Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI , 2003, NeuroImage.

[13]  Joshua W. Brown,et al.  Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding , 2003, Science.

[14]  H Garavan,et al.  A midline dissociation between error-processing and response-conflict monitoring , 2003, NeuroImage.

[15]  T. Shallice,et al.  Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. , 2003, Brain : a journal of neurology.

[16]  John Jonides,et al.  Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. H Weissman,et al.  Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features , 2003, NeuroImage.

[18]  Matthew F S Rushworth,et al.  Functional Specialization within Medial Frontal Cortex of the Anterior Cingulate for Evaluating Effort-Related Decisions , 2003, The Journal of Neuroscience.

[19]  M. Milham,et al.  Competition for priority in processing increases prefrontal cortex's involvement in top-down control: an event-related fMRI study of the stroop task. , 2003, Brain research. Cognitive brain research.

[20]  Keiji Tanaka,et al.  Neuronal Correlates of Goal-Based Motor Selection in the Prefrontal Cortex , 2003, Science.

[21]  E. Awh,et al.  Conflict adaptation effects in the absence of executive control , 2003, Nature Neuroscience.

[22]  K. R. Ridderinkhof,et al.  Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency , 2003, Cognitive, affective & behavioral neuroscience.

[23]  K. A. Hadland,et al.  The anterior cingulate and reward-guided selection of actions. , 2003, Journal of neurophysiology.

[24]  D. Tucker,et al.  Electrophysiological Responses to Errors and Feedback in the Process of Action Regulation , 2003, Psychological science.

[25]  Jelena Jovanovic,et al.  Anterior cingulate cortex and the Stroop task: neuropsychological evidence for topographic specificity , 2002, Neuropsychologia.

[26]  E. Soetens,et al.  Control over location-based response activation in the Simon task: behavioral and electrophysiological evidence. , 2002, Journal of experimental psychology. Human perception and performance.

[27]  C. Carter,et al.  The anterior cingulate as a conflict monitor: fMRI and ERP studies , 2002, Physiology & Behavior.

[28]  H. Garavan,et al.  Dissociable Executive Functions in the Dynamic Control of Behavior: Inhibition, Error Detection, and Correction , 2002, NeuroImage.

[29]  Jonathan D. Cohen,et al.  A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict , 2002, Cognitive, affective & behavioral neuroscience.

[30]  Eliot Hazeltine,et al.  Dissociable Contributions of Prefrontal and Parietal Cortices to Response Selection , 2002, NeuroImage.

[31]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[32]  B. J. Casey,et al.  The Effect of Preceding Context on Inhibition: An Event-Related fMRI Study , 2002, NeuroImage.

[33]  John C Gore,et al.  An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. , 2002, Brain research. Cognitive brain research.

[34]  C. Carter,et al.  The Timing of Action-Monitoring Processes in the Anterior Cingulate Cortex , 2002, Journal of Cognitive Neuroscience.

[35]  Adrian R. Willoughby,et al.  The Medial Frontal Cortex and the Rapid Processing of Monetary Gains and Losses , 2002, Science.

[36]  Stephen M Kosslyn,et al.  Deficits in visual cognition and attention following bilateral anterior cingulotomy , 2001, Neuropsychologia.

[37]  A. Dale,et al.  Dorsal anterior cingulate cortex: A role in reward-based decision making , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. V. Cramon,et al.  Subprocesses of Performance Monitoring: A Dissociation of Error Processing and Response Competition Revealed by Event-Related fMRI and ERPs , 2001, NeuroImage.

[39]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[40]  N. Cohen,et al.  The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. , 2001, Brain research. Cognitive brain research.

[41]  Jonathan D. Cohen,et al.  Anterior Cingulate Cortex, Conflict Monitoring, and Levels of Processing , 2001, NeuroImage.

[42]  W. Gehring,et al.  Functions of the Medial Frontal Cortex in the Processing of Conflict and Errors , 2001, The Journal of Neuroscience.

[43]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. , 2001, Cerebral cortex.

[44]  Randy L. Buckner,et al.  An Event-Related fMRI Study of Overt and Covert Word Stem Completion , 2001, NeuroImage.

[45]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[46]  T. Paus Primate anterior cingulate cortex: Where motor control, drive and cognition interface , 2001, Nature Reviews Neuroscience.

[47]  G. Glover,et al.  Error‐related brain activation during a Go/NoGo response inhibition task , 2001, Human brain mapping.

[48]  G. Lohmann,et al.  Color-Word Matching Stroop Task: Separating Interference and Response Conflict , 2001, NeuroImage.

[49]  J. Schall,et al.  Performance monitoring by the supplementary eye ® eld , 2000 .

[50]  R. Poldrack,et al.  Neural Activation During Response Competition , 2000, Journal of Cognitive Neuroscience.

[51]  R. Peyron,et al.  Functional imaging of brain responses to pain. A review and meta-analysis (2000) , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[52]  Colin M. Macleod,et al.  Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention , 2000, Trends in Cognitive Sciences.

[53]  C Andrew,et al.  Motor response suppression and the prepotent tendency to respond: a parametric fMRI study , 2000, Neuropsychologia.

[54]  E. Crone,et al.  Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[56]  J. Dostrovsky,et al.  Human anterior cingulate cortex neurons modulated by attention-demanding tasks. , 2000, Journal of neurophysiology.

[57]  T. Braver,et al.  Anterior Cingulate Cortex and Response Conflict : Effects of Response Modality and Processing Domain , 2022 .

[58]  R. Knight,et al.  Prefrontal–cingulate interactions in action monitoring , 2000, Nature Neuroscience.

[59]  K. Kiehl,et al.  Error processing and the rostral anterior cingulate: an event-related fMRI study. , 2000, Psychophysiology.

[60]  T. Braver,et al.  Anterior Cingulate and the Monitoring of Response Conflict: Evidence from an fMRI Study of Overt Verb Generation , 2000, Journal of Cognitive Neuroscience.

[61]  M. Botvinick,et al.  Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Hohnsbein,et al.  ERP components on reaction errors and their functional significance: a tutorial , 2000, Biological Psychology.

[63]  Jonathan D. Cohen,et al.  Conflict monitoring versus selection-for-action in anterior cingulate cortex , 1999, Nature.

[64]  A. Turken,et al.  Response selection in the human anterior cingulate cortex , 1999, Nature Neuroscience.

[65]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Botvinick,et al.  The Contribution of the Anterior Cingulate Cortex to Executive Processes in Cognition , 1999, Reviews in the neurosciences.

[67]  T. Paus,et al.  Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies , 1998, Neuroreport.

[68]  M. Botvinick,et al.  Anterior cingulate cortex, error detection, and the online monitoring of performance. , 1998, Science.

[69]  R. Parasuraman The attentive brain , 1998 .

[70]  M. Posner,et al.  Executive attention: Conflict, target detection, and cognitive control. , 1998 .

[71]  M. Farah,et al.  Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[72]  C. Braun,et al.  Event-Related Brain Potentials Following Incorrect Feedback in a Time-Estimation Task: Evidence for a Generic Neural System for Error Detection , 1997, Journal of Cognitive Neuroscience.

[73]  Daphne N. Yu,et al.  High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. , 1997, Cerebral cortex.

[74]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[75]  Jonathan D. Cohen,et al.  Progress in the use of interactive models for understanding attention and performance , 1994 .

[76]  D. Meyer,et al.  A Neural System for Error Detection and Compensation , 1993 .

[77]  Alan C. Evans,et al.  Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. , 1993, Journal of neurophysiology.

[78]  E. Donchin,et al.  Optimizing the use of information: strategic control of activation of responses. , 1992, Journal of experimental psychology. General.

[79]  A. Henik,et al.  Controlling Stroop effects by manipulating expectations for color words , 1992, Memory & cognition.

[80]  James L. McClelland,et al.  A parallel distributed processing approach to automaticity. , 1992, The American journal of psychology.

[81]  Karl J. Friston,et al.  Willed action and the prefrontal cortex in man: a study with PET , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.