Nonconforming finite element methods with subgrid viscosity applied to advection‐diffusion‐reaction equations

A nonconforming (Crouzeix–Raviart) finite element method with subgrid viscosity is analyzed to approximate advection-diffusion-reaction equations. The error estimates are quasi-optimal in the sense that keeping the Peclet number fixed, the estimates are suboptimal of order in the mesh size for the L2-norm and optimal for the advective derivative on quasi-uniform meshes. The method is also reformulated as a finite volume box scheme providing a reconstruction formula for the diffusive flux with local conservation properties. Numerical results are presented to illustrate the error analysis. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006

[1]  Linda El Alaoui,et al.  Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods , 2004 .

[2]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[3]  Gunar Matthies,et al.  A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems , 1998 .

[4]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[5]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[6]  Jean-Pierre Croisille,et al.  Finite Volume Box Schemes and Mixed Methods , 2000 .

[7]  Jean-Pierre Croisille,et al.  Finite volume box schemes on triangular meshes , 1998 .

[8]  J. Maubach,et al.  Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems , 1997 .

[9]  M. Fortin,et al.  A non‐conforming piecewise quadratic finite element on triangles , 1983 .

[10]  Lutz Tobiska,et al.  The streamline–diffusion method for nonconforming Qrot1 elements on rectangular tensor–product meshes , 2001 .

[11]  Erik Burman,et al.  A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..

[12]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of classC0 in Hilbert spaces , 2001 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[15]  Petr Knobloch,et al.  The P1mod Element: A New Nonconforming Finite Element for Convection-Diffusion Problems , 2003, SIAM J. Numer. Anal..

[16]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[17]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear monotone operators , 2001 .

[18]  Jean-Pierre Croisille,et al.  Some nonconforming mixed box schemes for elliptic problems , 2002 .

[19]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..