Hierarchical Bayesian myocardial perfusion quantification

Highlights • Estimates of myocardial perfusion from dynamic contrast-enhancement MRI may be unreliable due to the difficulties in fitting complex tracer-kinetic models to the imaging data.• We propose the use of Bayesian inference for the parameter estimation in quantitative myocardial perfusion MRI.• We demonstrate the improved reliability of the quantitative parameters over the traditional least-squares fitting in both simulated and patient data.

[1]  E. Nagel,et al.  Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. , 2012, Journal of the American College of Cardiology.

[2]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[3]  Aleksandra Radjenovic,et al.  Myocardial blood flow at rest and stress measured with dynamic contrast‐enhanced MRI: Comparison of a distributed parameter model with a fermi function model , 2013, Magnetic resonance in medicine.

[4]  Pankaj Garg,et al.  Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects , 2018, Journal of Cardiovascular Magnetic Resonance.

[5]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[6]  M. Jerosch-Herold Quantification of myocardial perfusion by cardiovascular magnetic resonance , 2010, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[7]  L. Axel Is Qualitative Cardiac Perfusion MRI "Good Enough"? , 2018, JACC Cardiovascular Imaging.

[8]  Guang-Zhong Yang,et al.  Bayesian Methods for Pharmacokinetic Models in Dynamic Contrast-Enhanced Magnetic Resonance Imaging , 2006, IEEE Transactions on Medical Imaging.

[9]  Jeroen J. Bax,et al.  2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. , 2013, European heart journal.

[10]  Clemens Elster,et al.  Pixel-wise quantification of myocardial perfusion using spatial Tikhonov regularization , 2018, Physics in medicine and biology.

[11]  Ben Glocker,et al.  Automated cardiovascular magnetic resonance image analysis with fully convolutional networks , 2017, Journal of Cardiovascular Magnetic Resonance.

[12]  David Atkinson,et al.  Bayesian estimation of pharmacokinetic parameters for DCE-MRI with a robust treatment of enhancement onset time. , 2007, Physics in medicine and biology.

[13]  Volker Schmid,et al.  Spatial two‐tissue compartment model for dynamic contrast‐enhanced magnetic resonance imaging , 2014 .

[14]  Colin Berry,et al.  Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. , 2019, The New England journal of medicine.

[15]  Steven P Sourbron,et al.  Classic models for dynamic contrast‐enhanced MRI , 2013, NMR in biomedicine.

[16]  E. Nagel,et al.  Cardiac magnetic resonance stress testing: Results and prognosis , 2009, Current cardiology reports.

[17]  R. Wilson,et al.  Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. , 1997, Radiology.

[18]  E. Fleck,et al.  Magnetic Resonance Perfusion Measurements for the Noninvasive Detection of Coronary Artery Disease , 2003, Circulation.

[19]  D. Magee,et al.  Comparison of the Diagnostic Performance of Four Quantitative Myocardial Perfusion Estimation Methods Used in Cardiac MR Imaging: CE-MARC Substudy. , 2015, Radiology.

[20]  E. Rostrup,et al.  Myocardial perfusion modeling using MRI , 1996, Magnetic resonance in medicine.

[21]  Amit R. Patel,et al.  Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. , 2010, Journal of the American College of Cardiology.

[22]  M. Robson,et al.  Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. , 2007, Journal of the American College of Cardiology.

[23]  David M Higgins,et al.  Sensitivity of quantitative myocardial dynamic contrast‐enhanced MRI to saturation pulse efficiency, noise and t1 measurement error: Comparison of nonlinearity correction methods , 2016, Magnetic resonance in medicine.

[24]  Sonia Nielles-Vallespin,et al.  Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification , 2017, Journal of Cardiovascular Magnetic Resonance.

[25]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[26]  E. Nagel,et al.  Influence of Spatial Resolution on the Accuracy of Quantitative Myocardial Perfusion in First Pass Stress Perfusion CMR , 2014, Magnetic resonance in medicine.

[27]  Nuno Bettencourt,et al.  Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement , 2015, Journal of Cardiovascular Magnetic Resonance.

[28]  Amedeo Chiribiri,et al.  Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance , 2017, JACC. Cardiovascular imaging.

[29]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[30]  R. Wilson,et al.  Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. , 1998, Medical physics.

[31]  L H Cheong,et al.  An automatic approach for estimating bolus arrival time in dynamic contrast MRI using piecewise continuous regression models. , 2003, Physics in medicine and biology.

[32]  David Atkinson,et al.  A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis , 2017, Comput. Medical Imaging Graph..

[33]  Andrew E. Arai,et al.  Diagnostic Performance of Fully Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance , 2018, JACC. Cardiovascular imaging.

[34]  Ganesh Adluru,et al.  Estimating extraction fraction and blood flow by combining first-pass myocardial perfusion and T1 mapping results. , 2017, Quantitative imaging in medicine and surgery.

[35]  P. Kolh,et al.  [2014 ESC/EACTS Guidelines on myocardial revascularization]. , 2014, Kardiologia polska.

[36]  G. Sun,et al.  Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta-analysis. , 2014, JACC. Cardiovascular imaging.

[37]  Andreas Schuster,et al.  Voxel‐wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison , 2012, Magnetic resonance in medicine.

[38]  Gregor F. Fussmann,et al.  Estimating parameters from multiple time series of population dynamics using Bayesian inference , 2018, bioRxiv.

[39]  Anthony H. Aletras,et al.  Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography , 2017, Journal of Cardiovascular Magnetic Resonance.

[40]  T. Ismail,et al.  Importance of operator training and rest perfusion on the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance , 2018, Journal of Cardiovascular Magnetic Resonance.

[41]  M. Reiser,et al.  Tracer kinetic modeling in myocardial perfusion quantification using MRI , 2015, Magnetic resonance in medicine.

[42]  Guang-Zhong Yang,et al.  A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast‐enhanced MRI oncology study , 2007, Magnetic resonance in medicine.

[43]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[44]  Lin-Ching Chang,et al.  Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance , 2016, Journal of Cardiovascular Magnetic Resonance.

[45]  Scott D Flamm,et al.  Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update , 2013, Journal of Cardiovascular Magnetic Resonance.

[46]  D. Magee,et al.  Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy. , 2018, JACC. Cardiovascular imaging.

[47]  Bjoern H. Menze,et al.  Estimating Kinetic Parameter Maps From Dynamic Contrast-Enhanced MRI Using Spatial Prior Knowledge , 2009, IEEE Transactions on Medical Imaging.

[48]  David L Buckley,et al.  Uncertainty in the analysis of tracer kinetics using dynamic contrast‐enhanced T1‐weighted MRI , 2002, Magnetic resonance in medicine.

[49]  Michael Ingrisch,et al.  Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer , 2013, Journal of Pharmacokinetics and Pharmacodynamics.

[50]  P. Kellman,et al.  Quantitative myocardial perfusion in coronary artery disease: A perfusion mapping study , 2019, Journal of magnetic resonance imaging : JMRI.

[51]  E. Nagel,et al.  Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance , 2011, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[52]  Florence d'Alché-Buc,et al.  Parameter estimation of perfusion models in dynamic contrast‐enhanced imaging: a unified framework for model comparison , 2017, Medical Image Anal..

[53]  P. Kolh,et al.  2014 ESC/EACTS guidelines on myocardial revascularization. , 2015, Revista espanola de cardiologia.

[54]  Johnathan M. Bardsley,et al.  Laplace-distributed increments, the Laplace prior, and edge-preserving regularization , 2012 .

[55]  Jack Lee,et al.  Robust Non-Rigid Motion Compensation of Free-Breathing Myocardial Perfusion MRI Data , 2019, IEEE Transactions on Medical Imaging.