Pseudo-optimal measures

Based on a pseudo-addition @? on [0,~], pseudo-optimal measures related to non-negative set functions vanishing at the empty set (non-negative games) are introduced. For a fixed pseudo-addition @?, an equivalence ~"@? on non-negative set functions is studied. A special stress is given to pure pseudo-optimal measures, admitting no other ~"@? equivalent set function.

[1]  Yanyong Guan,et al.  Set-valued information systems , 2006, Inf. Sci..

[2]  Deli Zhang,et al.  On set-valued fuzzy measures , 2004, Inf. Sci..

[3]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[4]  Angus Macintyre,et al.  Trends in Logic , 2001 .

[5]  Hideo Tanaka,et al.  Fuzzy integrals based on pseudo-additions and multiplications , 1988 .

[6]  Radko Mesiar,et al.  Generalizations of k-order additive discrete fuzzy measures , 1999, Fuzzy Sets Syst..

[7]  Michel GRABISCH,et al.  The Interaction and Möbius Representations of Fuzzy Measures on Finite Spaces, -Additive Measures: A Survey , 2022 .

[8]  M. Sugeno,et al.  Pseudo-additive measures and integrals , 1987 .

[9]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..

[10]  Endre Pap,et al.  Decomposable measures and nonlinear equations , 1997, Fuzzy Sets Syst..

[11]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[12]  Radko Mesiar,et al.  Pseudo-arithmetical operations as a basis for the general measure and integration theory , 2004, Inf. Sci..

[13]  Ehud Lehrer,et al.  The concave integral over large spaces , 2008, Fuzzy Sets Syst..

[14]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[15]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[16]  Radko Mesiar,et al.  Pan-operations structure , 1995, Fuzzy Sets Syst..

[17]  Yixiang Chen,et al.  Domain semantics of possibility computations , 2008, Inf. Sci..

[18]  Jun Li,et al.  Generalized Lebesgue integral , 2011, Int. J. Approx. Reason..

[19]  Martina Danková,et al.  Pseudo-Riemann-Stieltjes integral , 2009, Inf. Sci..

[20]  G. Klir,et al.  Generalized Measure Theory , 2008 .

[21]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[22]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[23]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .