The rate of entropy increase at the edge of chaos

[1]  Constantino Tsallis,et al.  I. Nonextensive Statistical Mechanics and Thermodynamics: Historical Background and Present Status , 2001 .

[2]  Christian Beck,et al.  Application of generalized thermostatistics to fully developed turbulence , 2000 .

[3]  T. Arimitsu,et al.  Analysis of fully developed turbulence in terms of Tsallis statistics , 2000 .

[4]  V. Latora,et al.  SUPERDIFFUSION AND OUT-OF-EQUILIBRIUM CHAOTIC DYNAMICS WITH MANY DEGREES OF FREEDOMS , 1999, cond-mat/9904389.

[5]  M. Lyra,et al.  Low-dimensional non-linear dynamical systems and generalized entropy , 1999 .

[6]  Pisa,et al.  A non extensive approach to the entropy of symbolic sequences , 1999, chao-dyn/9902006.

[7]  V. Latora,et al.  Kolmogorov-Sinai Entropy Rate versus Physical Entropy , 1998, chao-dyn/9806006.

[8]  V. Latora,et al.  Chaos and statistical mechanics in the Hamiltonian mean field model , 1998, chao-dyn/9803019.

[9]  C. Tsallis,et al.  Circular-like maps: sensitivity to the initial conditions, multifractality and nonextensivity , 1999 .

[10]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[11]  C. Tsallis,et al.  Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .

[12]  Imitation games: Power-law sensitivity to initial conditions and nonextensivity , 1998 .

[13]  C. Tsallis,et al.  Sensitivity to initial conditions in the Bak-Sneppen model of biological evolution , 1998 .

[14]  C. Tsallis,et al.  Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems , 1997, cond-mat/9709226.

[15]  V. Latora,et al.  Lyapunov Instability and Finite Size Effects in a System with Long-Range Forces , 1997, chao-dyn/9707024.

[16]  A. Bhowal Damage spreading in the ‘sandpile’ model of SOC , 1997, cond-mat/9707210.

[17]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[18]  C. Tsallis,et al.  Power-law sensitivity to initial conditions—New entropic representation , 1997 .

[19]  C. Tsallis,et al.  Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity , 1997, cond-mat/9701096.

[20]  Per Bak,et al.  How Nature Works , 1996 .

[21]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[22]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[23]  C. Tsallis,et al.  Generalized statistical mechanics : connection with thermodynamics , 1991 .

[24]  A. Politi,et al.  Dynamical Behaviour at the Onset of Chaos , 1988 .

[25]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[26]  T. Schneider,et al.  Resistance and eigenstates in a tight-binding model with quasiperiodic potential , 1987 .

[27]  Mitchell J. Feigenbaum,et al.  Scaling spectra and return times of dynamical systems , 1987 .

[28]  Mitchell J. Feigenbaum Some characterizations of strange sets , 1987 .

[29]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[30]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[31]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[32]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[33]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[34]  Critical velocity for a self-sustaining vortex tangle in superfluid helium , 1983 .

[35]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[36]  Peter Grassberger,et al.  Some more universal scaling laws for critical mappings , 1981 .

[37]  Nikolai SergeevichHG Krylov,et al.  Works on the foundations of statistical physics , 1979 .

[38]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[39]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.