Edge-based rich representation for vehicle classification

In this paper, we propose an approach to vehicle classification under a mid-field surveillance framework. We develop a repeatable and discriminative feature based on edge points and modified SIFT descriptors, and introduce a rich representation for object classes. Experimental results show the proposed approach is promising for vehicle classification in surveillance videos despite great challenges such as limited image size and quality and large intra-class variations. Comparisons demonstrate the proposed approach outperforms other methods

[1]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[2]  Ronen Basri,et al.  3-D to 2-D recognition with regions , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  C. Schmid,et al.  Scale-invariant shape features for recognition of object categories , 2004, CVPR 2004.

[4]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Cordelia Schmid,et al.  Shape recognition with edge-based features , 2003, BMVC.

[6]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[8]  Martial Hebert,et al.  Man-made structure detection in natural images using a causal multiscale random field , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[10]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[12]  W. Eric L. Grimson,et al.  Background Subtraction Using Markov Thresholds , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[13]  Björn Stenger,et al.  Shape context and chamfer matching in cluttered scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[14]  Tieniu Tan,et al.  Model-Based Localisation and Recognition of Road Vehicles , 1998, International Journal of Computer Vision.

[15]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[16]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[17]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[18]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[19]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[20]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  W. Eric L. Grimson,et al.  Localizing Overlapping Parts by Searching the Interpretation Tree , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Anil K. Jain,et al.  Vehicle Segmentation and Classification Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  David W. Jacobs,et al.  Robust and Efficient Detection of Salient Convex Groups , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Ronen Basri,et al.  3-D to 2-D Pose Determination with Regions , 1999, International Journal of Computer Vision.

[27]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).