Frontiers in Synaptic Neuroscience Synaptic Neuroscience Stdp in the Hippocampus: the Data the Activity Requirements for Spike Timing-dependent Plasticity in the Hippocampus

Synaptic plasticity has historically been investigated most intensely in the hippocampus and therefore it is somewhat surprising that the majority of studies on spike timing-dependent plasticity (STDP) have focused not in the hippocampus but on synapses in the cortex. One of the major reasons for this bias is the relative ease in obtaining paired electrophysiological recordings from synaptically coupled neurons in cortical slices, in comparison to hippocampal slices. Another less obvious reason has been the difficulty in achieving reliable STDP in the hippocampal slice preparation and confusion surrounding the conditions required. The original descriptions of STDP in the hippocampus was performed on paired recordings from neurons in dissociated or slice cultures utilizing single pairs of presynaptic and postsynaptic spikes and were subsequently replicated in acute hippocampal slices. Further work in several laboratories using conditions that more closely replicate the situation in vivo revealed a requirement for multiple postsynaptic spikes that necessarily complicate the absolute timing rules for STDP. Here we review the hippocampal STDP literature focusing on data from acute hippocampal slice preparations and highlighting apparently contradictory results and the variations in experimental conditions that might account for the discrepancies. We conclude by relating the majority of the available experimental data to a model for STDP induction in the hippocampus based on a critical role for postsynaptic Ca2+ dynamics.

[1]  A. I. Schastnyĭ [Selective induction]. , 1973, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova.

[2]  W. Levy,et al.  Synapses as associative memory elements in the hippocampal formation , 1979, Brain Research.

[3]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  T. Sejnowski,et al.  Associative long-term depression in the hippocampus induced by hebbian covariance , 1989, Nature.

[6]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Debanne,et al.  Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Debanne,et al.  Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  W. N. Ross,et al.  Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[11]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[12]  D. Debanne,et al.  Heterogeneity of Synaptic Plasticity at Unitary CA3–CA1 and CA3–CA3 Connections in Rat Hippocampal Slice Cultures , 1999, The Journal of Neuroscience.

[13]  O. Paulsen,et al.  Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. , 1999, The Journal of physiology.

[14]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[15]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[16]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[17]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[18]  J. Lisman,et al.  A Model of Synaptic Memory A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly , 2001, Neuron.

[19]  Shigeo Watanabe,et al.  Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  O. Paulsen,et al.  Maturation of Long-Term Potentiation Induction Rules in Rodent Hippocampus: Role of GABAergic Inhibition , 2003, The Journal of Neuroscience.

[22]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[23]  Carson C. Chow,et al.  Calcium time course as a signal for spike-timing-dependent plasticity. , 2005, Journal of neurophysiology.

[24]  L. Abbott,et al.  Extending the effects of spike-timing-dependent plasticity to behavioral timescales. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Wang,et al.  Malleability of Spike-Timing-Dependent Plasticity at the CA3–CA1 Synapse , 2006, The Journal of Neuroscience.

[26]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[27]  Marco Fuenzalida,et al.  Changes of the EPSP Waveform Regulate the Temporal Window for Spike-Timing-Dependent Plasticity , 2007, The Journal of Neuroscience.

[28]  Nicolas Brunel,et al.  STDP in a Bistable Synapse Model Based on CaMKII and Associated Signaling Pathways , 2007, PLoS Comput. Biol..

[29]  J. Mellor,et al.  The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones , 2007, The Journal of physiology.

[30]  Moritz Helias,et al.  Structural Plasticity Controlled by Calcium Based Correlation Detection , 2008, Frontiers Comput. Neurosci..

[31]  H. Urakubo,et al.  Requirement of an Allosteric Kinetics of NMDA Receptors for Spike Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[32]  S. Grant,et al.  Opposing effects of PSD‐93 and PSD‐95 on long‐term potentiation and spike timing‐dependent plasticity , 2008, The Journal of physiology.

[33]  Emilie Campanac,et al.  Spike timing‐dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons , 2008, The Journal of physiology.

[34]  J. Isaac,et al.  Hippocampal Place Cell Firing Patterns Can Induce Long-Term Synaptic Plasticity In Vitro , 2009, The Journal of Neuroscience.

[35]  Sanjai Bhagat,et al.  Mathematical modeling indicates that regulatory inhibition of CD8+ T cell cytotoxicity can limit efficacy of IL-15 immunotherapy in cases of high pre-treatment SIV viral load , 2023, bioRxiv.