Self-catalyzed metal organic chemical vapor deposition growth of vertical β-Ga2O3 nanowire arrays

Self-catalyzed metal organic chemical vapor deposition (MOCVD) growth of Ga2O3 nanowires on GaN layers prepared on a sapphire substrate has been studied. Nanowire orientations are found to be growth temperature dominated. The vertical yields over total (VOT) curve shows a maximum peak beyond 70% around 480 °C, based on scanning electron microscope observations. X-ray diffraction patterns revealed a primary β-(-201) normal orientation of as grown nanowires all over the studied temperature interval. Further transmission electron microscopy characterization had confirmed β-(-201) normal axial orientation of these vertical nanowires, which have well crystallinity. The β-(010)//GaN(110) in-plane epitaxial relationship is consistent with reported Ga2O3 film/nanowire growth. Nanowires crystallized in β-[001] axial orientation were considered to be the inclined ones. Based on contrast experiments, the temperature dominated growth behavior is considered a thermodynamic process. The two observed crystalline orientation might have distinguishable but similar system energy, which results in coexistence of multi orientation nanowires over a large temperature span and an optimum temperature window for vertical β-(-201) normal orientation. The presented optimized β-Ga2O3 nanowire arrays with highest VOT close to 90% should effectively promote development of reliable high performance devices based on Ga2O3 nanowires.

[1]  Guohao Yu,et al.  Broadband Ultraviolet Photodetector Based on Vertical Ga2O3/GaN Nanowire Array with High Responsivity , 2019, Advanced Optical Materials.

[2]  Shulong Lu,et al.  Solar-blind ultraviolet photodetector based on graphene/vertical Ga2O3 nanowire array heterojunction , 2018, nano Online.

[3]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[4]  Susheng Tan,et al.  Nanofabrication of β-Ga2O3 nanowires for device implementation , 2017, 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO).

[5]  Mukesh Kumar,et al.  Diameter Tuning of β$$ \beta $$-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique , 2017, Nanoscale research letters.

[6]  Mukesh Kumar,et al.  Diameter Tuning of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta $$\end{document}β-Ga2O3 Nanowires Using Chem , 2017, Nanoscale Research Letters.

[7]  Tong-Yi Zhang,et al.  Self-consistent growth of single-crystalline (01)β-Ga2O3 nanowires using a flexible GaN seed nanocrystal , 2017 .

[8]  Claudio Ferrari,et al.  Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD , 2016 .

[9]  L. L. da Luz,et al.  Urchin-like artificial gallium oxide nanowires grown by a novel MOCVD/CVD-based route for random laser application , 2016 .

[10]  F. Bechstedt,et al.  Quasiparticle bands and spectra of Ga 2 O 3 polymorphs , 2016 .

[11]  Chunrui Wang,et al.  Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction. , 2016, ACS applied materials & interfaces.

[12]  J. Tersoff,et al.  Stable Self-Catalyzed Growth of III-V Nanowires. , 2015, Nano letters.

[13]  X. Ren,et al.  Self-catalyzed growth of pure zinc blende 〈110〉 InP nanowires , 2015 .

[14]  Weihua Tang,et al.  Fabrication of β-Ga_2O_3 thin films and solar-blind photodetectors by laser MBE technology , 2014 .

[15]  S. Chang,et al.  Highly Sensitive $\beta{-}{\rm Ga}_{2}{\rm O}_{3}$ Nanowire Nanowires Isopropyl Alcohol Sensor , 2014, IEEE Sensors Journal.

[16]  G. Bacher,et al.  Low‐Temperature MOCVD of Crystalline Ga2O3 Nanowires using tBu3Ga , 2013 .

[17]  Gilles Patriarche,et al.  Predictive modeling of self-catalyzed III-V nanowire growth , 2013 .

[18]  R. Singh,et al.  Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices , 2013 .

[19]  S. Chang,et al.  ${\rm Ga}_{2}{\rm O}_{3}$ Nanowire Photodetector Prepared on ${\rm SiO}_{2}/{\rm Si}$ Template , 2013, IEEE Sensors Journal.

[20]  X. Ren,et al.  Formation mechanism and optical properties of InAs quantum dots on the surface of GaAs nanowires. , 2012, Nano letters.

[21]  T. Hsueh,et al.  Growth of Ga$_{\bm 2}$O $_{\bm 3}$ Nanowires and the Fabrication of Solar-Blind Photodetector , 2011, IEEE Transactions on Nanotechnology.

[22]  V. Dubrovskii,et al.  Surface energy of monolayer formation during nanowire growth by vapor-liquid-solid mechanism , 2011 .

[23]  Ichiro Yamada,et al.  Efficient Assembly of Bridged β‐Ga2O3 Nanowires for Solar‐Blind Photodetection , 2010 .

[24]  Jens Bauer,et al.  Growth of β‐Ga2O3 on Al2O3 and GaAs using metal‐organic vapor‐phase epitaxy , 2009 .

[25]  H. Ahn,et al.  The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size , 2009 .

[26]  H. Tan,et al.  Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures. , 2007, Small.

[27]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[28]  E. Bakkers,et al.  Position-controlled epitaxial III–V nanowires on silicon , 2006 .

[29]  J. Y. Zhang,et al.  Individual β-Ga2O3 nanowires as solar-blind photodetectors , 2006 .

[30]  I. P. Soshnikov,et al.  Temperature profile along a nanowhisker growing in high vacuum , 2006 .

[31]  Zhiyong Fan,et al.  β-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor , 2005 .

[32]  N. H. Kim,et al.  Synthesis of βGa2O3 nanowires by an MOCVD approach , 2005 .

[33]  Jih-Jen Wu,et al.  Low-Temperature Catalytic Growth of β-Ga2O3 Nanowires Using Single Organometallic Precursor. , 2004 .

[34]  J. Wu,et al.  Low‐Temperature Growth of Well‐Aligned β‐Ga2O3 Nanowires from a Single‐Source Organometallic Precursor , 2004 .

[35]  Jih-Jen Wu,et al.  Low-Temperature Catalytic Growth of β-Ga2O3 Nanowires Using Single Organometallic Precursor , 2004 .

[36]  Reuter,et al.  Surfactants in epitaxial growth. , 1989, Physical review letters.

[37]  J. Boeckl,et al.  Towards High‐Mobility Heteroepitaxial β‐Ga2O3 on Sapphire − Dependence on The Substrate Off‐Axis Angle , 2018 .

[38]  S. J. Pearton,et al.  Perspective—Opportunities and Future Directions for Ga2O3 , 2017 .

[39]  X. Bai,et al.  Preparation and electrical properties of ultrafine Ga2O3 nanowires. , 2006, The journal of physical chemistry. B.