Hierarchy of simulation approaches for hot carrier transport in deep submicron devices

Rapid advances in integrated circuit technology are pushing the size of semiconductor devices into the deep submicron range. The traditional simulation approaches based on simplified transport equations are not adequate to capture the behaviour of high-energy carriers that are responsible for nonlinear transport behaviour and reliability problems. This brief review examines the complete hierarchy of device simulation approaches and analyses the capabilities and limitations of the various approaches that are available today.

[1]  K. Jensen,et al.  Numerical simulation of transient response and resonant-tunneling characteristics of double-barrier semiconductor structures as a function of experimental parameters , 1989 .

[2]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[3]  M. Artaki Hot‐electron flow in an inhomogeneous field , 1988 .

[4]  C. Gardner Hydrodynamic and Monte Carlo simulation of an electron shock wave in a 1- mu m n/sup +/-n-n/sup +/ diode , 1993 .

[5]  Karl Hess,et al.  Monte Carlo Device Simulation: Full Band and Beyond , 1991 .

[6]  J. Frey,et al.  Two-dimensional numerical simulation of energy transport effects in Si and GaAs MESFET's , 1982, IEEE Transactions on Electron Devices.

[7]  W. Frensley Simulation of resonant‐tunneling heterostructure devices , 1985 .

[8]  M. Patil,et al.  Monte Carlo simulation of real-space transfer transistors: device physics and scaling effects , 1993 .

[9]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[10]  M. Claassen,et al.  Tunneling and Ionization Phenomena in GaAs Pin Diodes , 1992, ESSDERC '92: 22nd European Solid State Device Research conference.

[11]  U. Ravaioli,et al.  An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects , 1992, IEEE Electron Device Letters.

[12]  Gardner,et al.  Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  W. Frensley,et al.  Wigner-function model of a resonant-tunneling semiconductor device. , 1987, Physical review. B, Condensed matter.

[14]  Edwin C. Kan,et al.  Calculation of velocity overshoot in submicron devices using an augmented drift-diffusion model , 1991 .

[15]  T. Ning,et al.  Optically induced injection of hot electrons into SiO2 , 1974 .

[16]  R. Stratton,et al.  Semiconductor current-flow equations (diffusion and degeneracy) , 1972 .

[17]  Karl Hess,et al.  Theory of hot electron emission from silicon into silicon dioxide , 1983 .

[18]  P. A. Childs,et al.  Spatially transient hot electron distributions in silicon determined from the chambers path integral solution of the Boltzmann transport equation , 1993 .

[19]  C.H. Lee,et al.  Simulation of a long term memory device with a full bandstructure Monte Carlo approach , 1995, IEEE Electron Device Letters.

[20]  T. H. Ning,et al.  Hot-electron emission from silicon into silicon dioxide , 1978 .

[21]  Steven E. Laux,et al.  Electron states in narrow gate-induced channels in Si , 1986 .

[22]  Neil Goldsman,et al.  Highly stable and routinely convergent 2-dimensional hydrodynamic device simulation , 1994 .

[23]  G. Baccarani,et al.  An investigation of steady-state velocity overshoot in silicon , 1985 .

[24]  J. F. Verwey,et al.  Nonvolatile Semiconductor Memories , 1976 .

[25]  Massimo Rudan,et al.  MULTI‐DIMENSIONAL DISCRETIZATION SCHEME FOR THE HYDRODYNAMIC MODEL OF SEMICONDUCTOR DEVICES , 1986 .

[26]  An analytical formulation of the length coefficient for the augmented drift-diffusion model including velocity overshoot , 1991 .

[27]  Numerical simulation of non-homogeneous submicron semiconductor devices by a deterministic particle method , 1993 .

[28]  M. Stettler,et al.  A critical examination of the assumptions underlying macroscopic transport equations for silicon devices , 1993 .

[29]  Y. Kamakura,et al.  A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact‐ionization model , 1994 .

[30]  A. Kriman,et al.  Transient Simulation of Ultra-Small GaAs MESFET Using Quantum Moment Equations , 1992, Picosecond Electronics and Optoelectronics.

[31]  C. Wang,et al.  Metal silicide patterning: a new approach to silicon nanoelectronics , 1996 .

[32]  N. Goldsman,et al.  Device modeling by deterministic self-consistent solution of Poisson and Boltzmann transport equations , 1992 .

[33]  A. Tasch,et al.  Simulation program suitable for hot carrier studies: An efficient multiband Monte Carlo model using both full and analytic band structure description for silicon , 1993 .

[34]  P. Lugli,et al.  A comparison of Monte Carlo and cellular automata approaches for semiconductor device simulation , 1993, IEEE Electron Device Letters.

[35]  J. P. Kreskovsky,et al.  Transport via the Liouville equation and moments of quantum distribution functions , 1993 .

[36]  Karl Hess,et al.  Calculation of hot electron distributions in silicon by means of an evolutionary algorithm , 1996 .

[37]  K. Blotekjaer Transport equations for electrons in two-valley semiconductors , 1970 .

[38]  Richard M. Martin,et al.  Ab initio analysis of the electron-phonon interaction in silicon , 1993 .

[39]  Kenji Taniguchi,et al.  Analytical device model for submicrometer MOSFET's , 1991 .

[40]  R. Stratton,et al.  Diffusion of Hot and Cold Electrons in Semiconductor Barriers , 1962 .

[41]  L. Register,et al.  Numerical simulation of mesoscopic systems with open boundaries using the multidimensional time‐dependent Schrödinger equation , 1991 .

[42]  Ferry,et al.  Self-consistent study of the resonant-tunneling diode. , 1989, Physical review. B, Condensed matter.

[43]  S. Luryi,et al.  Novel real-space hot-electron transfer devices , 1983, IEEE Electron Device Letters.

[44]  W. Pötz Self‐consistent model of transport in quantum well tunneling structures , 1989 .

[45]  M. Stettler,et al.  Formulation of the Boltzmann equation in terms of scattering matrices , 1993 .

[46]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .

[47]  Chi-Wang Shu,et al.  The Response of the Hydrodynamic Model to Heat Conduction, Mobility, and Relaxation Expressions , 1995 .

[48]  W. Fawcett,et al.  Monte Carlo determination of electron transport properties in gallium arsenide , 1970 .

[49]  Karl Hess,et al.  Negative differential resistance through real‐space electron transfer , 1979 .

[50]  Multidimensional augmented current equation including velocity overshoot , 1991, IEEE Electron Device Letters.

[51]  Varani,et al.  Generalization of Thermal Conductivity and Lorenz Number to Hot-Carrier Conditions in Nondegenerate Semiconductors. , 1996, Physical review letters.

[52]  K. Thornber,et al.  Current equations for velocity overshoot , 1982, IEEE Electron Device Letters.

[53]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[54]  Macucci,et al.  Quasi-three-dimensional Green's-function simulation of coupled electron waveguides. , 1995, Physical review. B, Condensed matter.

[55]  N. Goldsman,et al.  A physics-based analytical/numerical solution to the Boltzmann transport equation for use in device simulation , 1991 .

[56]  A. Gnudi,et al.  Two-dimensional NOSFET Simulation by means of Multidimensional Spherical Harmonics Expansion of the Boltzmann Transport Equation , 1992, ESSDERC '92: 22nd European Solid State Device Research conference.

[57]  T. Tang,et al.  Transport coefficients for a silicon hydrodynamic model extracted from inhomogeneous Monte-Carlo calculations , 1992 .

[58]  Zhiping Yu,et al.  Formulation of Macroscopic Transport Models for Numerical Simulation of Semiconductor Devices , 1995 .

[59]  P. J. Price,et al.  Monte Carlo calculations on hot electron energy tails , 1977 .

[60]  P. Lugli,et al.  The Monte Carlo Method for Semiconductor Device Simulation , 1990 .

[61]  J. P. Kreskovsky,et al.  Electron diffraction through an aperture in a potential wall , 1989 .

[62]  A. T. Galick,et al.  Efficient numerical simulation of electron states in quantum wires , 1990 .