The Eta Pairing Revisited

In this paper, we simplify and extend the Eta pairing, originally discovered in the setting of supersingular curves by Barreto , to ordinary curves. Furthermore, we show that by swapping the arguments of the Eta pairing, one obtains a very efficient algorithm resulting in a speed-up of a factor of around six over the usual Tate pairing, in the case of curves that have large security parameters, complex multiplication by an order of Qopf (radic-3), and when the trace of Frobenius is chosen to be suitably small. Other, more minor savings are obtained for more general curves

[1]  Iwan M. Duursma,et al.  Tate Pairing Implementation for Hyperelliptic Curves y2 = xp-x + d , 2003, ASIACRYPT.

[2]  Annegret Weng,et al.  Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..

[3]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[4]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[5]  Paulo S. L. M. Barreto,et al.  Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..

[6]  Paulo S. L. M. Barreto,et al.  Constructing Elliptic Curves with Prescribed Embedding Degrees , 2002, SCN.

[7]  Antoine Joux,et al.  A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.

[8]  Ian F. Blake,et al.  Advances in Elliptic Curve Cryptography: Frontmatter , 2005 .

[9]  Steven D. Galbraith,et al.  Implementing the Tate Pairing , 2002, ANTS.

[10]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[11]  S. Galbraith,et al.  Advances in Elliptic Curve Cryptography: Pairings , 2005 .

[12]  Arjen K. Lenstra,et al.  The XTR Public Key System , 2000, CRYPTO.

[13]  Frederik Vercauteren,et al.  On computable isomorphisms in efficient asymmetric pairing-based systems , 2007, Discret. Appl. Math..

[14]  Nigel P. Smart,et al.  High Security Pairing-Based Cryptography Revisited , 2006, ANTS.

[15]  N. Smart,et al.  On Computable Isomorphisms in Efficient Pairing Based Systems ⋆ , 2005 .

[16]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[17]  Alfred Menezes,et al.  Pairing-Based Cryptography at High Security Levels , 2005, IMACC.

[18]  Lei Hu,et al.  Implementation of Cryptosystems Based on Tate Pairing , 2005, Journal of Computer Science and Technology.

[19]  Shi Cui,et al.  Special Polynomial Families for Generating More Suitable Elliptic Curves for Pairing-Based Cryptosystems , 2005, IACR Cryptol. ePrint Arch..

[20]  Scott A. Vanstone,et al.  Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms , 2001, CRYPTO.

[21]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..