The Eta Pairing Revisited
暂无分享,去创建一个
[1] Iwan M. Duursma,et al. Tate Pairing Implementation for Hyperelliptic Curves y2 = xp-x + d , 2003, ASIACRYPT.
[2] Annegret Weng,et al. Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..
[3] Paulo S. L. M. Barreto,et al. Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.
[4] Ian F. Blake,et al. Elliptic curves in cryptography , 1999 .
[5] Paulo S. L. M. Barreto,et al. Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..
[6] Paulo S. L. M. Barreto,et al. Constructing Elliptic Curves with Prescribed Embedding Degrees , 2002, SCN.
[7] Antoine Joux,et al. A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.
[8] Ian F. Blake,et al. Advances in Elliptic Curve Cryptography: Frontmatter , 2005 .
[9] Steven D. Galbraith,et al. Implementing the Tate Pairing , 2002, ANTS.
[10] Matthew K. Franklin,et al. Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.
[11] S. Galbraith,et al. Advances in Elliptic Curve Cryptography: Pairings , 2005 .
[12] Arjen K. Lenstra,et al. The XTR Public Key System , 2000, CRYPTO.
[13] Frederik Vercauteren,et al. On computable isomorphisms in efficient asymmetric pairing-based systems , 2007, Discret. Appl. Math..
[14] Nigel P. Smart,et al. High Security Pairing-Based Cryptography Revisited , 2006, ANTS.
[15] N. Smart,et al. On Computable Isomorphisms in Efficient Pairing Based Systems ⋆ , 2005 .
[16] Paulo S. L. M. Barreto,et al. Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.
[17] Alfred Menezes,et al. Pairing-Based Cryptography at High Security Levels , 2005, IMACC.
[18] Lei Hu,et al. Implementation of Cryptosystems Based on Tate Pairing , 2005, Journal of Computer Science and Technology.
[19] Shi Cui,et al. Special Polynomial Families for Generating More Suitable Elliptic Curves for Pairing-Based Cryptosystems , 2005, IACR Cryptol. ePrint Arch..
[20] Scott A. Vanstone,et al. Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms , 2001, CRYPTO.
[21] Hovav Shacham,et al. Short Signatures from the Weil Pairing , 2001, J. Cryptol..