Castelnuovo–Mumford regularity in biprojective spaces

We define the concept of regularity for bigraded modules over a bigraded polynomial ring. In this setting we prove analogs of some of the classical results on m-regularity for graded modules over polynomial algebras.

[1]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[2]  Jean-Pierre Serre Faisceaux algébriques cohérents , 1955 .

[3]  R. Godement,et al.  Topologie algébrique et théorie des faisceaux , 1960 .

[4]  S. Eilenberg,et al.  Homological Algebra (PMS-19) , 1956 .

[5]  David Mumford,et al.  What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.

[6]  Diane Maclagan,et al.  Multigraded Castelnuovo-Mumford Regularity , 2003 .

[7]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.

[8]  Michael Stillman,et al.  A criterion for detectingm-regularity , 1987 .

[9]  David Eisenbud,et al.  Linear Free Resolutions and Minimal Multiplicity , 1984 .

[10]  Alexander Grothendieck,et al.  Elements de geometrie algebrique III: Etude cohomologique des faisceaux coherents , 1961 .

[11]  J. Tyrrell,et al.  LECTURES ON CURVES ON AN ALGEBRAIC SURFACE , 1968 .

[12]  Eero Hyry,et al.  The diagonal subring and the Cohen-Macaulay property of a multigraded ring , 1999 .

[13]  Kei-ichi Watanabe,et al.  On graded rings, I , 1978 .

[14]  H. Butts,et al.  Finite unions of ideals and modules , 1975 .

[15]  Bernard L. Johnston,et al.  CASTELNUOVO REGULARITY AND GRADED RINGS ASSOCIATED TO AN IDEAL , 1995 .

[16]  Alexander Grothendieck,et al.  Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2) , 1962 .

[17]  Akira Ooishi,et al.  Castelnuovo's regularity of graded rings and modules , 1982 .

[18]  J. Sampson,et al.  A Künneth formula for coherent algebraic sheaves , 1959 .

[19]  R. Stanley Combinatorics and commutative algebra , 1983 .