Reducing the domination number of graphs via edge contractions

In this paper, we study the following problem: given a connected graph $G$, can we reduce the domination number of $G$ by at least one using $k$ edge contractions, for some fixed integer $k \geq 0$? We present positive and negative results regarding the computational complexity of this problem.

[1]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[2]  Jun-Ming Xu,et al.  Domination and Total Domination Contraction Numbers of Graphs , 2010, Ars Comb..

[3]  M. Vatshelle New Width Parameters of Graphs , 2012 .

[4]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[5]  Daniël Paulusma,et al.  Contraction and Deletion Blockers for Perfect Graphs and $H$-free Graphs , 2017, Theor. Comput. Sci..

[6]  Dominique de Werra,et al.  Minimum d-blockers and d-transversals in graphs , 2011, J. Comb. Optim..

[7]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[8]  Daniël Paulusma,et al.  Blocking Independent Sets for H-Free Graphs via Edge Contractions and Vertex Deletions , 2017, TAMC.

[9]  Daniël Paulusma,et al.  Reducing the Clique and Chromatic Number via Edge Contractions and Vertex Deletions , 2016, ISCO.

[10]  Petr A. Golovach,et al.  On the Tractability of Optimization Problems on H-Graphs , 2017, Algorithmica.

[11]  Daniel Vanderpooten,et al.  Critical edges for the assignment problem: Complexity and exact resolution , 2013, Oper. Res. Lett..

[12]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[13]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  D. de Werra,et al.  Weighted Transversals and Blockers for Some Optimization Problems in Graphs , 2011 .

[16]  Daniël Paulusma,et al.  Critical Vertices and Edges in $H$-free Graphs , 2017, Discret. Appl. Math..

[17]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[18]  Zsolt Tuza,et al.  The most vital nodes with respect to independent set and vertex cover , 2011, Discret. Appl. Math..

[19]  Cristopher Moore,et al.  Hard Tiling Problems with Simple Tiles , 2001, Discret. Comput. Geom..

[20]  D. de Werra,et al.  Blockers and transversals in some subclasses of bipartite graphs: When caterpillars are dancing on a grid , 2010, Discret. Math..

[21]  Eduardo L. Pasiliao,et al.  Minimum vertex blocker clique problem , 2014, Networks.

[22]  Daniël Paulusma,et al.  Contraction Blockers for Graphs with Forbidden Induced Paths , 2015, CIAC.