Generalised phase contrast: microscopy, manipulation and more

Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optical phase cryptography, light-efficient image projection and parallel laser beam shaping for optical landscapes. In this review, we discuss the fundamental ideas behind generalised phase contrast and present a survey of its exciting applications.

[1]  George O. Reynolds,et al.  The New Physical Optics Notebook , 1989 .

[2]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[3]  Jesper Glückstad,et al.  Dynamically reconfigurable optical lattices. , 2005, Optics express.

[4]  Peter John Rodrigo,et al.  Decrypting binary phase patterns by amplitude , 2004 .

[5]  B. Javidi Securing Information with Optical Technologies , 1997 .

[6]  Jesper Glückstad,et al.  Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes. , 2005, Optics express.

[7]  Peter John Rodrigo,et al.  Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. , 2005, FEMS microbiology letters.

[8]  Jesper Glückstad,et al.  Comparison of generalized phase contrast and computer generated holography for laser image projection. , 2008, Optics express.

[9]  Koji Ikuta,et al.  Submicron manipulation tools driven by light in a liquid , 2003 .

[10]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[11]  Y. P. Lee,et al.  Transformation of gaussian to coherent uniform beams by inverse-gaussian transmittive filters. , 1998, Applied optics.

[12]  J. Glückstad,et al.  Reverse phase contrast: an experimental demonstration. , 2002, Applied optics.

[13]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[14]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2002, CLEO 2002.

[15]  D. Grier A revolution in optical manipulation , 2003, Nature.

[16]  Jesper Glückstad,et al.  Sorting particles with light , 2004, Nature materials.

[17]  P C Mogensen,et al.  Phase-only optical decryption of a fixed mask. , 2001, Applied optics.

[18]  J. Glückstad,et al.  Gaussian to uniform intensity shaper based on generalized phase contrast. , 2008, Optics express.

[19]  Peter John Rodrigo,et al.  Optical 3D Manipulation and Observation in Real-Time , 2006, J. Robotics Mechatronics.

[20]  Steven Lewis,et al.  Flow visualization by dark central ground interferometry. , 1985, Applied optics.

[21]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[22]  Gabriel Popescu,et al.  Fourier phase microscopy for investigation of biological structures and dynamics. , 2004, Optics letters.

[23]  Jesper Glückstad,et al.  Dynamic formation of optically trapped microstructure arrays for biosensor applications. , 2004, Biosensors & bioelectronics.

[24]  Kishan Dholakia,et al.  Optical micromanipulation takes hold , 2006, SPIE Optics + Photonics.

[25]  Peter John Rodrigo,et al.  Dynamic array of dark optical traps , 2004 .

[26]  Miles J. Padgett,et al.  Defining the trapping limits of holographical optical tweezers , 2004 .

[27]  Jesper Glückstad Generalized phase contrast , 2000 .

[28]  R. N. Smartt,et al.  Theory and Application of Point-Diffraction Interferometers , 1975 .

[29]  David W. M. Marr,et al.  Fabrication of linear colloidal structures for microfluidic applications , 2002 .

[30]  Peter John Rodrigo,et al.  Real-time three-dimensional optical micromanipulation of multiple particles and living cells. , 2004, Optics letters.

[31]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[32]  J. Glückstad,et al.  Computer-controlled orientation of multiple optically-trapped microscopic particles , 2003 .

[33]  Frank Wyrowski,et al.  Vortex Stagnation problem in iterative Fourier transform algorithms , 2005 .

[34]  Tomoya Ogawa,et al.  Observation of growth defects in synthetic quartz crystals by light-scattering tomography , 1978 .

[35]  Frank Wyrowski,et al.  Diffractive optical elements: iterative calculation of quantized, blazed phase structures , 1990 .

[36]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[37]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.

[38]  Jesper Glückstad,et al.  Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method , 2000 .

[39]  Alex Terray,et al.  Microfluidic Control Using Colloidal Devices , 2002, Science.

[40]  J. Glückstad,et al.  Accurate quantitative phase imaging using generalized phase contrast. , 2008, Optics express.

[41]  Peter John Rodrigo,et al.  Four-dimensional optical manipulation of colloidal particles , 2005 .

[42]  Jesper Glückstad,et al.  Reverse phase contrast for the generation of phase-only spatial light modulation , 2001 .

[43]  H Toyoda,et al.  Lossless light projection. , 1997, Optics letters.

[44]  Peter John Rodrigo,et al.  Three-dimensional forces in GPC-based counterpropagating-beam traps. , 2006, Optics express.

[45]  C. M. Jefferson,et al.  Design and performance of a refractive optical system that converts a Gaussian to a flattop beam. , 2000, Applied optics.

[46]  Jeppe Seidelin Dam,et al.  Independent trapping, manipulation and characterization by an all-optical biophotonics workstation , 2008 .

[47]  Jesper Glückstad,et al.  Dynamic optical manipulation of colloidal systems using a spatial light modulator , 2003 .

[48]  Pál Ormos,et al.  Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. , 2009, Optics express.

[49]  P C Mogensen,et al.  Phase-only optical encryption. , 2000, Optics letters.

[50]  Peter Bøggild,et al.  Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. , 2005, Optics express.

[51]  J. Dynes,et al.  Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. , 2008, Optics express.

[52]  Jesper Glückstad Phase contrast image synthesis , 1996 .

[53]  Johannes Courtial,et al.  Assembly of 3-dimensional structures using programmable holographic optical tweezers. , 2004, Optics express.

[54]  George O. Reynolds,et al.  The New Physical Optics Notebook: Tutorials in Fourier Optics , 1989 .

[55]  Jesper Glückstad,et al.  Phase-only Spatial Light Modulation by the Reverse Phase Contrast Method , 2002 .

[56]  Tomoya Ogawa,et al.  Observation of Lattice Defects in GaAs and Heat-treated Si Crystals by Infrared Light Scattering Tomography , 1983 .

[57]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[58]  J. Glückstad,et al.  2D optical manipulation and assembly of shape-complementary planar microstructures. , 2007, Optics express.

[59]  Steffen Lindek,et al.  Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy , 1994 .

[60]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[61]  J. Goodman Introduction to Fourier optics , 1969 .

[62]  Stefan Sinzinger,et al.  Optimizing the generalized phase contrast method for a planar optical device , 2003 .

[63]  Array illumination with minimal non-uniformity based on generalized phase contrast , 2009 .

[64]  Peter John Rodrigo,et al.  High-speed phase modulation using the RPC method with a digital micromirror-array device. , 2006, Optics express.

[65]  Jesper Glückstad,et al.  Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators , 2001 .

[66]  Stefan Sinzinger,et al.  Phase-only optical decryption in a planar-integrated micro-optics system , 2004 .

[67]  Jesper Glückstad,et al.  Real-time interactive optical micromanipulation of a mixture of high-and low-index particles. , 2004, Optics express.

[68]  J. Glückstad Adaptive array illumination and structured light generated by spatial zero-order self-phase modulation in a Kerr medium , 1995 .

[69]  Bahram Javidi,et al.  Fully phase encrypted image processor , 1999 .

[70]  Peter John Rodrigo,et al.  Laser projection using generalized phase contrast. , 2007, Optics letters.

[71]  Multi-wavelength spatial light shaping using generalized phase contrast. , 2008, Optics express.

[72]  F. Zernike How I discovered phase contrast. , 1955, Science.

[73]  P C Mogensen,et al.  Optimal phase contrast in common-path interferometry. , 2001, Applied optics.

[74]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[75]  Jesper Glückstad,et al.  Generalized Phase Contrast:: Applications in Optics and Photonics , 2009 .

[76]  Alan Mink,et al.  High-speed quantum key distribution system supports one-time pad encryption of real-time video , 2006, SPIE Defense + Commercial Sensing.

[77]  Generalized phase contrast matched to Gaussian illumination. , 2007, Optics express.

[78]  Jesper Glückstad,et al.  Multiple-beam optical tweezers generated by the generalized phase-contrast method. , 2002, Optics letters.

[79]  Satoru Toyooka,et al.  Phase shifting common path interferometer using a liquid-crystal phase modulator , 1994 .

[80]  Gabriel Popescu,et al.  Quantitative phase imaging of live cells using fast Fourier phase microscopy. , 2007, Applied optics.

[81]  Jesper Glückstad,et al.  Dynamic array generation and pattern formation for optical tweezers , 2000 .

[82]  Peter John Rodrigo,et al.  GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator. , 2006, Optics express.

[83]  Robert W. Cohn,et al.  Fundamental properties of spatial light modulators for the approximate optical computation of Fourier transforms: a review , 2001 .

[84]  H Toyoda,et al.  Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator. , 1994, Applied optics.

[85]  Peter John Rodrigo,et al.  Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment. , 2006, Optics express.