Structure and thermal stability of phage T4 lysozyme.

[1]  Brian W. Matthews,et al.  An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .

[2]  B. Matthews,et al.  Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. , 1987, Biochemistry.

[3]  W. Baase,et al.  Thermal denaturation of bacteriophage T4 lysozyme at neutral pH. , 1987, Biopolymers.

[4]  B. Matthews,et al.  Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. , 1987, Journal of molecular biology.

[5]  P. Privalov,et al.  Cold denaturation of myoglobin. , 1986, Journal of molecular biology.

[6]  L. J. Perry,et al.  Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme. , 1986, Biochemistry.

[7]  Robert R. Birge,et al.  Applications of fluorescence in the biomedical sciences , 1986 .

[8]  W. Baase,et al.  A lysoplate assay for Escherichia coli cell wall-active enzymes. , 1985, Analytical biochemistry.

[9]  R. Griffey,et al.  Nuclear magnetic resonance observation and dynamics of specific amide protons in T4 lysozyme. , 1985, Biochemistry.

[10]  L. J. Perry,et al.  Non-toxic expression in Escherichia coli of a plasmid-encoded gene for phage T4 lysozyme. , 1985, Gene.

[11]  D. Goldenberg,et al.  Dissecting the roles of individual interactions in protein stability: Lessons from a circularized protein , 1985, Journal of cellular biochemistry.

[12]  M. Smith,et al.  Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. , 1984, DNA.

[13]  L. J. Perry,et al.  Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. , 1984, Science.

[14]  J. Schellman,et al.  Thermodynamic stability and point mutations of bacteriophage T4 lysozyme. , 1984, Journal of molecular biology.

[15]  M. Desmadril,et al.  Evidence for intermediates during unfolding and refolding of a two-domain protein, phage T4 lysozyme: equilibrium and kinetic studies. , 1984, Biochemistry.

[16]  G. R. Smith,et al.  Nucleotide sequence of the lysozyme gene of bacteriophage T4. Analysis of mutations involving repeated sequences. , 1983, Journal of molecular biology.

[17]  B. Matthews,et al.  An oscillation data collection system for high‐resolution protein crystallography , 1981 .

[18]  J. Schellman,et al.  Mutations and protein stability , 1981, Biopolymers.

[19]  M. Desmadril,et al.  Existence of intermediates in the refolding of T4 lysozyme at pH 7.4. , 1981, Biochemical and biophysical research communications.

[20]  P M Cullis,et al.  Affinities of amino acid side chains for solvent water. , 1981, Biochemistry.

[21]  Michael G. Rossmann,et al.  Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting , 1979 .

[22]  B. Matthews,et al.  Molecular basis of thermostability in the lysozyme from bacteriophage T4 , 1979, Nature.

[23]  M. Levitt Conformational preferences of amino acids in globular proteins. , 1978, Biochemistry.

[24]  B. Matthews,et al.  Structure of the lysozyme from bacteriophage T4: an electron density map at 2.4 A resolution. , 1978, Journal of molecular biology.

[25]  H. Scheraga Use of random copolymers to determine the helix-coil stability constants of the naturally occurring amino acids , 1978 .

[26]  J. Schellman,et al.  Stability of phage T4 lysozymes. I. Native properties and thermal stability of wild type and two mutant lysozymes. , 1977, Biochimica et biophysica acta.

[27]  Jan Hermans,et al.  The Stability of Globular Protein , 1975 .

[28]  B. Matthews,et al.  Letter: crystallographic data fro lysoxyme from bacteriophage T4. , 1973, Journal of molecular biology.

[29]  M. Inouye,et al.  Complete primary structure of phage lysozyme from Escherichia coli T4. , 1968, Journal of molecular biology.

[30]  C. Tanford Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation of Proteins , 1962 .

[31]  E. Freese The specific mutagenic effect of base analogues on Phage T4 , 1959 .

[32]  Paul J. Flory,et al.  Theory of Elastic Mechanisms in Fibrous Proteins , 1956 .

[33]  M. A. Jesaitis Differences in the Chemical Composition of the Phage Nucleic Acids , 1956, Nature.