The High Current Transport Experiment for heavy-ion inertial fusion

The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line-charge density /spl sim/ 0.2 /spl mu/C/m) over long pulse durations (>4 /spl mu/s) in alternating gradient electrostatic and magnetic quadrupoles. This experiment is testing - at driver-relevant scale - transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We present the results for a coasting 1 MeV K/sup +/ ion beam transported through the first ten electrostatic transport quadrupoles, measured with beam-imaging and phase-space diagnostics. The latest additions to the experiment include measurements of the secondary ion, electron and atom coefficients due to halo ions scraping the wall, and four magnetic quadrupoles to explore similar issues in magnetic channels.

[1]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[2]  L. Laslett,et al.  STABILITY OF THE KAPCHINSKIJ-VLADIMIRSKIJ (K-V) DISTRIBUTION IN LONG PERIODIC TRANSPORT SYSTEMS , 1983 .

[3]  M. Tiefenback,et al.  Measurements of Stability Limits for a Space-Charge-Dominated Ion Beam in a Long a. G. Transport Channel , 1985, IEEE Transactions on Nuclear Science.

[4]  B Yaakobi,et al.  Editor: I. I. Sobelman. X-Ray Plasma Spectroscopy and the Properties of Multi-Charged Ions (Volume 179, Proceedings of the Lebedev Physics Institute), (NOVA Science Publishers, Inc., New York, 1988) 256 pages, $87.00 , 1989 .

[5]  R. Bangerter The heavy ion fusion program in the USA , 2001 .

[6]  R. Bangerter Ion beam fusion , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Peter A. Seidl,et al.  Overview of the scientific objectives of the High Current Experiment for heavy-ion fusion , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[8]  Michael Tiefenback,et al.  An applied voltage to eliminate current transients in a one‐dimensional diode , 1983 .

[9]  P. Lucas,et al.  PROCEEDINGS 2001 PARTICLE ACCELERATOR CONFERENCE , 2001 .

[10]  Peter A. Seidl,et al.  Imaging of heavy-ion beams on kapton film , 2002 .

[11]  P. Heitzenroeder,et al.  An Updated Point Design for Heavy Ion Fusion , 2002 .

[12]  R. Davidson,et al.  Warm-fluid description of intense beam equilibrium and electrostatic stability properties , 1998 .

[13]  Peter A. Seidl,et al.  A 1.8-MeV K + injector for the high current beam transport experiment , 2002 .

[14]  R. Davidson,et al.  Physics of Nonneutral Plasmas , 1991 .

[15]  D. Rose,et al.  Results from a scaled final focus experiment for heavy ion fusion , 2002 .

[16]  Peter A. Seidl,et al.  Scaled beam merging experiment for heavy ion inertial fusion , 2002 .

[17]  A. A. Kolomiets,et al.  Design of 57.5 MHz CW RFQ for medium energy heavy ion superconducting linac. , 2002 .

[18]  R. C. Pardo,et al.  Proceedings of the XIX international Linac conference , 1999 .

[19]  Wayne R. Meier,et al.  Integrated experiments for heavy ion fusion , 2003 .

[20]  Martin Reiser,et al.  Theory and Design of Charged Particle Beams , 1994 .

[21]  Jean-Luc Vay,et al.  New developments in WARP: Progress toward end-to-end simulation 1 1 Work performed under auspices of U.S. DoE by LLNL, NRL, and LBNL under contracts W-7405-ENG-48, DE-AI02-93ER40799, DE-AI02-94ER54232, and DE-AC03-765F00098. Proceedings of the 12th International Symposium on Heavy Ion Inertial Fusio , 1998 .

[22]  Alex Friedman,et al.  Three-dimensional particle simulation of heavy-ion fusion beams , 1992 .

[23]  R. S. Mills,et al.  Relation between Field Energy and RMS Emittance in Intense Particle Beams , 1985, IEEE Transactions on Nuclear Science.

[24]  T. C. Sangster,et al.  Numerical simulation of intense-beam experiments at LLNL and LBNL , 1998 .

[25]  Irving Haber,et al.  Particle-in-cell simulations of the dynamic aperture of the HCX , 2002 .

[26]  H. Fleischmann,et al.  Experimental stripping cross sections for atoms and ions in gases, 1950–1970 , 1973 .

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  Phillip Colella,et al.  Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams , 2003 .

[29]  D. Grote,et al.  Simulation using initial 4D beam particle distributions synthesized from experimental data , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[30]  Shmuel Eylon,et al.  Beam dynamics studies with the heavy-ion linear induction accelerator MBE-4 , 1997 .

[31]  R. Cohen,et al.  Initial experimental studies of electron accumulation in a heavy-ion beam , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[32]  Steven M. Lund,et al.  Stability properties of the transverse envelope equations describing intense ion beam transport , 2004 .