Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks

Abstract A mathematical model for a polymer electrolyte fuel cell (PEFC) stack with an open-cathode manifold, where a fan provides the oxidant as well as cooling, is derived and studied. In short, the model considers two-phase flow and conservation of mass, momentum, species and energy in the ambient and PEFC stack, as well as conservation of charge and a phenomenological membrane and agglomerate model for the PEFC stack. The fan is resolved as an interfacial condition with a polynomial expression for the static pressure increase over the fan as a function of the fan velocity. The results suggest that there is strong correlation between fan power rating, the height of cathode flow-field and stack performance. Further, the placement of the fan – either in blowing or suction mode – does not give rise to a discernable difference in stack performance for the flow-field considered (metal mesh). Finally, it is noted that the model can be extended to incorporate other types of flow-fields and, most importantly, be employed for design and optimization of forced air-convection open-cathode PEFC stacks and adjacent fans.

[1]  M. Han,et al.  Characterization of gas diffusion layers for PEMFC , 2008 .

[2]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors , 2001 .

[3]  Wang Ying,et al.  Three-dimensional modeling and experimental investigation for an air-breathing polymer electrolyte membrane fuel cell (PEMFC) , 2005 .

[4]  A. A. Kulikovsky,et al.  Efficient Parallel Algorithm for Fuel Cell Stack Simulation , 2008, SIAM J. Appl. Math..

[5]  P. Rodatz,et al.  Operational aspects of a large PEFC stack under practical conditions , 2004 .

[6]  Datong Song,et al.  Numerical optimization study of the catalyst layer of PEM fuel cell cathode , 2004 .

[7]  Nathan P. Siegel,et al.  A two-dimensional computational model of a PEMFC with liquid water transport , 2004 .

[8]  Won-Yong Lee,et al.  Operating characteristics of 40 W-class PEMFC stacks using reformed gas under low humidifying conditions , 2008 .

[9]  Zhigang Qi,et al.  Enhancement of PEM fuel cell performance by steaming or boiling the electrode , 2002 .

[10]  Hyunchul Ju,et al.  Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data , 2004 .

[11]  Jon G. Pharoah,et al.  Computational analysis of heat and mass transfer in a micro-structured PEMFC cathode , 2006 .

[12]  Ay Su,et al.  Experimental evaluation of an ambient forced-feed air-supply PEM fuel cell , 2008 .

[13]  Hyunchul Ju,et al.  A single-phase, non-isothermal model for PEM fuel cells , 2005 .

[14]  Xianguo Li,et al.  A general formulation for a mathematical PEM fuel cell model , 2005 .

[15]  Norman Munroe,et al.  Review and comparison of approaches to proton exchange membrane fuel cell modeling , 2005 .

[16]  B. M. Suleiman,et al.  Dynamic plane source technique for simultaneous determination of specific heat, thermal conductivity and thermal diffusivity of metallic samples , 1991 .

[17]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[18]  Wang Ying,et al.  Effects of cathode channel configurations on the performance of an air-breathing PEMFC , 2005 .

[19]  Signe Kjelstrup,et al.  Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell , 2004 .

[20]  Michael Vynnycky,et al.  Analysis of a Two-Phase Non-Isothermal Model for a PEFC , 2005 .

[21]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[22]  Sadik Kakac,et al.  Two‐dimensional model for proton exchange membrane fuel cells , 1998 .

[23]  Michael Vynnycky,et al.  A quantitative study of the effect of flow-distributor geometry in the cathode of a PEM fuel cell , 2006 .

[24]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[25]  Z. H. Wang,et al.  Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells , 2000 .

[26]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells , 2000 .

[27]  S. Basu Recent trends in fuel cell science and technology , 2007 .

[28]  Michael Vynnycky,et al.  Validated Reduction and Accelerated Numerical Computation of a Model for the Proton Exchange Membrane Fuel Cell , 2009 .

[29]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[30]  Weilin Zhuge,et al.  Numerical simulation of a mini PEMFC stack , 2006 .

[31]  Chaoyang Wang,et al.  Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells , 2004 .

[32]  Matti Noponen,et al.  Current distribution measurements in a PEFC with net flow geometry , 2004 .

[33]  Jinfeng Wu,et al.  An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow , 2009 .

[34]  K. Agbossou,et al.  Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack , 2001 .

[35]  Wang Ying,et al.  Three-dimensional analysis for effect of channel configuration on the performance of a small air-breathing proton exchange membrane fuel cell (PEMFC) , 2005 .

[36]  Song-Yul Choe,et al.  Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects , 2007 .

[37]  Christopher Hebling,et al.  Experimental and numerical studies of portable PEMFC stack , 2009 .

[38]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[39]  Ranga Pitchumani,et al.  Numerical studies on an air-breathing proton exchange membrane (PEM) fuel cell , 2007 .

[40]  Michael Vynnycky,et al.  A Two‐Phase Non‐Isothermal PEFC Model: Theory and Validation , 2004 .

[41]  Tatsuo Tanaka,et al.  Development of a performance test method for PEFC stack , 2005 .

[42]  Zhigang Qi,et al.  PEM fuel cell stacks operated under dry-reactant conditions , 2002 .

[43]  Jon G. Pharoah,et al.  On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers , 2006 .

[44]  Biswa R. Padhy,et al.  Performance of DMFC with SS 316 bipolar/end plates , 2006 .

[45]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[46]  Akira Nakayama,et al.  Conjugate numerical model for cooling a fluid flowing through a spiral coil immersed in a chilled water container , 2000 .

[47]  Chao-Yang Wang,et al.  Transient analysis of polymer electrolyte fuel cells , 2005 .

[48]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[49]  P. Tucker Computation of Particle and Scalar Transport for Complex Geometry Turbulent Flows , 2001 .

[50]  Minggao Ouyang,et al.  Three-dimensional heat and mass transfer analysis in an air-breathing proton exchange membrane fuel cell , 2007 .

[51]  T. Nguyen,et al.  Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell , 2004 .

[52]  Hyunchul Ju,et al.  Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation , 2005 .

[53]  C. M. Rangel,et al.  High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions , 2007 .

[54]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[55]  Chao-Yang Wang,et al.  A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells , 2006 .

[56]  Ned Djilali,et al.  Transport Phenomena in Polymer Electrolyte Membranes , 2005 .

[57]  Chang-Soo Kim,et al.  Operating characteristics of an air-cooling PEMFC for portable applications , 2005 .

[58]  Chao-Yang Wang,et al.  Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells , 2005 .

[59]  Song-Yul Choe,et al.  Modeling and simulation of a PEM fuel cell stack considering temperature effects , 2006 .

[60]  Raghunathan Rengaswamy,et al.  A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode , 2007 .

[61]  Brant A. Peppley,et al.  Henry's Law and the solubilities of reactant gases in the modelling of PEM fuel cells , 2006 .

[62]  Afzal Suleman,et al.  Multi-variable optimization of PEMFC cathodes using an agglomerate model , 2007 .

[63]  D. H. Schwarz,et al.  3D Modeling of Catalyst Layers in PEM Fuel Cells Effects of Transport Limitations , 2007 .

[64]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[65]  M. Péra,et al.  PEFC Stack Operating in Anodic Dead End Mode , 2004 .

[66]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[67]  Jon G. Pharoah,et al.  A comparison of different approaches to modelling the PEMFC catalyst layer , 2008 .

[68]  U. Wagner,et al.  Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack , 2004 .

[69]  G. Lindbergh,et al.  Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode I. Mathematical Model , 2002 .

[70]  Tianshou Zhao,et al.  A two-dimensional, two-phase mass transport model for liquid-feed DMFCs , 2007 .

[71]  K. Murata,et al.  Steam reforming of gasoline promoted by partial oxidation reaction on novel bimetallic Ni-based catalysts to generate hydrogen for fuel cell-powered automobile applications , 2005 .

[72]  Ajit Kumar Kolar,et al.  A model for a vertical planar air breathing PEM fuel cell , 2007 .

[73]  Biao Zhou,et al.  A generalized numerical model for liquid water in a proton exchange membrane fuel cell with interdigitated design , 2009 .

[74]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .