Rational solutions of Painlevé-II equation as Gram determinant

Under the Flaschka–Newell Lax pair, the Darboux transformation for the Painlevé-II equation is constructed by the limiting technique. With the aid of the Darboux transformation, the rational solutions are represented by the Gram determinant, and then we give the large y asymptotics of the determinant and the rational solutions. Finally, the solution of the corresponding Riemann–Hilbert problem is obtained from the Darboux matrices.

[1]  Liming Ling,et al.  Kadomtsev–Petviashvili equation: One-constraint method and lump pattern , 2021, Physica D: Nonlinear Phenomena.

[2]  Jianke Yang,et al.  Universal rogue wave patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy , 2021, 2103.11223.

[3]  Jianke Yang,et al.  Rogue wave patterns in the nonlinear Schrödinger equation , 2021, Physica D: Nonlinear Phenomena.

[4]  Liming Ling,et al.  Asymptotic analysis of high order solitons for the Hirota equation , 2020, 2008.12631.

[5]  P. Clarkson,et al.  Cyclic Maya diagrams and rational solutions of higher order Painlevé systems , 2018, Studies in Applied Mathematics.

[6]  Liming Ling,et al.  Extreme superposition: Rogue waves of infinite order and the Painlevé-III hierarchy , 2018, Duke Mathematical Journal.

[7]  P. Miller,et al.  Rational Solutions of the Painlevé‐III Equation , 2018, Studies in Applied Mathematics.

[8]  Liming Ling,et al.  Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation , 2015, 1511.03544.

[9]  Bangti Jin,et al.  Inverse Problems , 2014, Series on Applied Mathematics.

[10]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Alexander Tovbis,et al.  Universality for the Focusing Nonlinear Schrödinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquée Solution to Painlevé I , 2010, 1004.1828.

[12]  P. Clarkson Vortices and Polynomials , 2008, 0901.0139.

[13]  P. Clarkson,et al.  The second Painlevé equation, its hierarchy and associated special polynomials , 2003 .

[14]  P. Clarkson Painlevé equations: nonlinear special functions , 2003 .

[15]  Li Yezhou,et al.  Rational Solutions of Painlevé Equations , 2002, Canadian Journal of Mathematics.

[16]  P. Clarkson,et al.  Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1998, solv-int/9811014.

[17]  Y. Ohta,et al.  Determinant structure of the rational solutions for the Painlevé II equation , 1996, solv-int/9709011.

[18]  Kazuo Okamoto Studies on the Painlevé equations , 1986 .

[19]  A. V. Kitaev Self-similar solutions of the modified nonlinear Schrödinger equation , 1985 .

[20]  J. Weiss THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .

[21]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[22]  Athanassios S. Fokas,et al.  On a unified approach to transformations and elementary solutions of Painlevé equations , 1982 .

[23]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[24]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[25]  J. Satsuma Solitons and Rational Solutions of Nonlinear Evolution Equations (Theory of Nonlinear Waves) , 1978 .

[26]  Mark J. Ablowitz,et al.  Exact Linearization of a Painlevé Transcendent , 1977 .

[27]  Guo Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations , 2015 .

[28]  Peter A. Clarkson,et al.  Painlevé transcendents , 2010, NIST Handbook of Mathematical Functions.

[29]  Y. Murata,et al.  Rational solutions of the second and the fourth Painlevé equations , 1985 .

[30]  É. Picard Mémoire sur la théorie des fonctions algébriques de deux variables , 1889 .