Common variants in Mendelian kidney disease genes and their association with renal function.

Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

Y. J. Kim | Audrey Y. Chu | Jeanette S. Andrews | Toshiko Tanaka | F. Kronenberg | A. Hofman | A. Uitterlinden | L. Ferrucci | R. Mägi | F. Hu | T. Lehtimäki | E. Boerwinkle | J. O’Connell | Z. Kutalik | S. Bergmann | P. Ridker | D. Chasman | V. Gudnason | J. Viikari | U. Nöthlings | H. Völzke | P. Mitchell | I. Borecki | M. Imboden | N. Probst-Hensch | O. Raitakari | A. Dehghan | A. Köttgen | Qiong Yang | Shih-Jen Hwang | W. Kao | F. Rivadeneira | J. Witteman | J. Coresh | C. Fox | S. Kardia | H. Wichmann | K. Lohman | Yongmei Liu | D. Siscovick | S. Wild | N. Hastie | A. Metspalu | T. Esko | A. Doney | A. Döring | B. Paulweber | T. Illig | I. Heid | T. Harris | I. Rudan | M. Stumvoll | A. Isaacs | C. V. van Duijn | I. Prokopenko | Jie-Jin Wang | J. Jukema | R. Schmidt | H. Schmidt | R. Biffar | G. Homuth | A. Teumer | U. Völker | G. Curhan | A. Franke | A. Wright | W. Koenig | B. Oostra | C. Hayward | O. Polašek | V. Vitart | H. Campbell | M. de Andrade | G. Eiriksdottir | E. Holliday | M. Kähönen | L. Launer | P. Vollenweider | James F. Wilson | S. Kardia | T. Aspelund | M. Feitosa | A. Robino | Jingzhong Ding | S. Turner | B. Freedman | P. Gasparini | A. Shuldiner | N. Glazer | Y. Aulchenko | A. Parsa | B. Mitchell | C. O’Seaghdha | Man Li | M. Cornelis | C. Palmer | A. Demirkan | Å. Johansson | M. Bochud | U. Gyllensten | P. Pramstaller | E. Atkinson | Guo Li | D. Ellinghaus | C. Fuchsberger | M. Nauck | R. Rettig | H. Kroemer | Ming-Huei Chen | F. Ernst | W. Igl | P. Kovacs | L. Zgaga | A. Tönjes | S. Trompet | B. Buckley | I. Ford | C. Böger | M. Gorski | S. Ulivi | B. Stengel | E. Hofer | B. Krämer | F. Murgia | C. Pattaro | C. Minelli | D. Toniolo | T. Zemunik | G. Pistis | G. Zaboli | D. Taliun | A. Tin | K. Endlich | H. Wheeler | J. Andrews | M. Boban | S. Stracke | M. Pirastu | M. Adam | H. Colhoun | C. Sala | M. Haun | B. Kollerits | M. Ciullo | L. Portas | D. Ruggiero | R. Sorice | C. Helmer | M. Foster | M. Rao | G. Thun | G. Jacobs | M. Struchalin | T. Nikopensius | Harshal A Deshmukh | H. Deshmukh | C. Hundertmark | A. Smith | Franco Giulianini | M. Olden | M. Province | Vincent Couraki | A. Smith | S. Turner | M. Kähönen | J. Coresh | Mathias Gorski | A. Uitterlinden | Sheila Ulivi | Ghazal Zaboli | A. Wright | Toshiko Tanaka | A. Hofman | B. Oostra | C. V. van Duijn | S. Kardia | A. Wright | F. Hu | R. Schmidt | A. Wright | Daniel Taliun | C. Palmer

[1]  Sylvia Stracke,et al.  Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function. , 2012, Human molecular genetics.

[2]  Harold Snieder,et al.  UMOD as a susceptibility gene for end-stage renal disease , 2012, BMC Medical Genetics.

[3]  Sylvia Stracke,et al.  Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function , 2012, PLoS genetics.

[4]  Neil Powe,et al.  Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD , 2011, PLoS genetics.

[5]  Sylvia Stracke,et al.  CUBN is a gene locus for albuminuria. , 2011, Journal of the American Society of Nephrology : JASN.

[6]  M. Boehnke,et al.  Meta‐analysis of genetic association studies and adjustment for multiple testing of correlated SNPs and traits , 2010, Genetic epidemiology.

[7]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[8]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[9]  Daniel F. Gudbjartsson,et al.  Association of Variants at UMOD with Chronic Kidney Disease and Kidney Stones—Role of Age and Comorbid Diseases , 2010, PLoS genetics.

[10]  M. Woodward,et al.  Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis , 2010, The Lancet.

[11]  Uwe Völker,et al.  New loci associated with kidney function and chronic kidney disease , 2010, Nature Genetics.

[12]  Mark N. Wass,et al.  Genetic loci influencing kidney function and chronic kidney disease , 2010, Nature Genetics.

[13]  F. Hildebrandt Genetic kidney diseases , 2010, The Lancet.

[14]  V. Salomaa,et al.  Risk factors for end‐stage renal disease in a community‐based population: 26‐year follow‐up of 25 821 men and women in eastern Finland , 2009, Journal of internal medicine.

[15]  Ben Vosman,et al.  Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers , 2010, BMC Genetics.

[16]  Thomas Meitinger,et al.  A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level , 2010, BMC Medical Genetics.

[17]  C. Meisinger,et al.  Effect of Chronic Kidney Disease and Comorbid Conditions on Health Care Costs: A 10-Year Observational Study in a General Population , 2009, American Journal of Nephrology.

[18]  Yurii S. Aulchenko,et al.  Multiple loci associated with indices of renal function and chronic kidney disease , 2009, Nature Genetics.

[19]  C. Fox,et al.  Trends in Diabetes, High Cholesterol, and Hypertension in Chronic Kidney Disease Among U.S. Adults: 1988–1994 to 1999–2004 , 2008, Diabetes Care.

[20]  Nilesh J Samani,et al.  Common Variants in Genes Underlying Monogenic Hypertension and Hypotension and Blood Pressure in the General Population , 2008, Hypertension.

[21]  J. Stephenson 1000 Genomes Project , 2008 .

[22]  M. Boehnke,et al.  So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. , 2007, American journal of human genetics.

[23]  J. Coresh,et al.  Prevalence of chronic kidney disease in the United States. , 2007, JAMA.

[24]  Neil R. Powe,et al.  Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. , 2007, Kidney international.

[25]  B. Freedman,et al.  Familial Clustering of Chronic Kidney Disease , 2007, Seminars in dialysis.

[26]  Jaakko Patrakka,et al.  Hereditary proteinuria syndromes and mechanisms of proteinuria. , 2006, The New England journal of medicine.

[27]  C. McCulloch,et al.  Which Comes First—Renal Dysfunction or High Blood Pressure? Elevated Blood Pressure and Risk of End-Stage Renal Disease in Subjects without Baseline Kidney Disease. Arch Intern Med 165: 923–928, 2005 , 2005 .

[28]  C. McCulloch,et al.  Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. , 2005, Archives of internal medicine.

[29]  A. Krolewski,et al.  Evidence for different susceptibility genes for proteinuria and ESRD in type 2 diabetes. , 2005, Advances in chronic kidney disease.

[30]  A. Bello,et al.  Chronic kidney disease: the global challenge , 2005, The Lancet.

[31]  Daniel Levy,et al.  Predictors of new-onset kidney disease in a community-based population. , 2004, JAMA.

[32]  Rury R Holman,et al.  Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). , 2003, Kidney international.

[33]  G. Beck,et al.  Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. , 1997, Kidney international.

[34]  E. Ritz,et al.  Diabetic nephropathy in type II diabetes. , 1996, American journal of kidney diseases : the official journal of the National Kidney Foundation.