An Adaptive Finite Element Method for the Diffraction Grating Problem with PML and Few-Mode DtN Truncations

[1]  Gang Bao,et al.  An Adaptive Finite Element Method for the Diffraction Grating Problem with Transparent Boundary Condition , 2015, SIAM J. Numer. Anal..

[2]  Natacha H. Lord,et al.  A dual weighted residual method applied to complex periodic gratings , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Weiying Zheng,et al.  Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems in Two-Layered Media , 2010, SIAM J. Numer. Anal..

[4]  L. Zschiedrich Transparent boundary conditions for Maxwell's equations: Numerical concepts beyond the PML method , 2009 .

[5]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[6]  Zhiming Chen,et al.  An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems , 2007, Math. Comput..

[7]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[8]  Joseph E. Pasciak,et al.  Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..

[9]  Haijun Wu,et al.  Adaptive finite-element method for diffraction gratings. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[11]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005, SIAM J. Numer. Anal..

[12]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[13]  Haijun Wu,et al.  An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures , 2003, SIAM J. Numer. Anal..

[14]  Habib Ammari,et al.  Maxwell's equations in periodic chiral structures , 2003 .

[15]  Zhiming Chen,et al.  On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..

[16]  Yanzhao Cao,et al.  Numerical solution of diffraction problems by a least-squares finite element method , 2000 .

[17]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[18]  Habib Ammari,et al.  Low-Frequency Electromagnetic Scattering , 2000, SIAM J. Math. Anal..

[19]  Lifeng Li,et al.  Oblique-coordinate-system-based Chandezon method for modeling one-dimensionally periodic, multilayer, inhomogeneous, anisotropic gratings , 1999 .

[20]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[21]  Jian-Ming Jin,et al.  Complex coordinate stretching as a generalized absorbing boundary condition , 1997 .

[22]  G. Bao Numerical analysis of diffraction by periodic structures: TM polarization , 1996 .

[23]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[24]  Lifeng Li Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings , 1996 .

[25]  Gang Bao,et al.  Finite element approximation of time harmonic waves in periodic structures , 1995 .

[26]  J. Allen Cox,et al.  Mathematical studies in rigorous grating theory , 1995 .

[27]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[28]  David C. Dobson,et al.  Optimal design of periodic antireflective structures for the Helmholtz equation , 1993, European Journal of Applied Mathematics.

[29]  Avner Friedman,et al.  The time-harmonic maxwell equations in a doubly periodic structure , 1992 .

[30]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[31]  T. Gaylord,et al.  Analysis and applications of optical diffraction by gratings , 1985, Proceedings of the IEEE.

[32]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[33]  Daniel Maystre,et al.  Multicoated gratings: a differential formalism applicable in the entire optical region , 1982 .

[34]  K. Oughstun,et al.  Electromagnetic theory of gratings , 1982, IEEE Journal of Quantum Electronics.

[35]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[36]  M. Neviere,et al.  Sur Une Nouvelle Methode De Resolution Du Probleme De La Diffraction D'une Onde Plane Par Un Reseau Infiniment Conducteur , 1971 .

[37]  Gang Bao,et al.  Mathematical Modeling in Optical Science , 2001, Mathematical Modeling in Optical Science.