Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing

In this correspondence, we give an alternative proof of the direct part of the classical-quantum channel coding theorem (the Holevo-Schumacher-Westmoreland (HSW) theorem), using ideas of quantum hypothesis testing. In order to show the existence of good codes, we invoke a limit theorem, relevant to the quantum Stein's lemma, in quantum hypothesis testing as the law of large numbers used in the classical case. We also apply a greedy construction of good codes using a packing procedure of noncommutative operators. Consequently we derive an upper bound on the coding error probability, which is used to give an alternative proof of the HSW theorem. This approach elucidates how the Holevo information applies to the classical-quantum channel coding problems

[1]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[2]  Shlomo Shamai,et al.  On joint source-channel coding for the Wyner-Ziv source and the Gel'fand-Pinsker channel , 2003, IEEE Trans. Inf. Theory.

[3]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[4]  Neri Merhav,et al.  On joint information embedding and lossy compression in the presence of a stationary memoryless attack channel , 2004, IEEE Transactions on Information Theory.

[5]  J. Wolfowitz The coding of messages subject to chance errors , 1957 .

[6]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[7]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[9]  Akio Fujiwara,et al.  Operational Capacity and Pseudoclassicality of a Quantum Channel , 1998, IEEE Trans. Inf. Theory.

[10]  Neri Merhav,et al.  On the capacity game of public watermarking systems , 2004, IEEE Transactions on Information Theory.

[11]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[12]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[13]  Amiel Feinstein,et al.  A new basic theorem of information theory , 1954, Trans. IRE Prof. Group Inf. Theory.

[14]  Amos Lapidoth,et al.  The Gaussian watermarking game , 2000, IEEE Trans. Inf. Theory.

[15]  L. Goddard Information Theory , 1962, Nature.

[16]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[17]  H. Yuen,et al.  Review of 'Quantum Detection and Estimation Theory' (Helstrom, C. W.; 1976) , 1977, IEEE Transactions on Information Theory.

[18]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[19]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[20]  A. S. Holevo,et al.  Capacity of a quantum communication channel , 1979 .

[21]  Syed A. Jafar,et al.  PhantomNet: exploring optimal multicellular multiple antenna systems , 2002, Proceedings IEEE 56th Vehicular Technology Conference.

[22]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[23]  C. Helstrom Quantum detection and estimation theory , 1969 .

[24]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[25]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[26]  Masahito Hayashi,et al.  On error exponents in quantum hypothesis testing , 2004, IEEE Transactions on Information Theory.