A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals

Abstract We present a literature collection of experimental adsorption energies over late transition metal surfaces for systems where we believe the energy measurements are particularly accurate, and the atomic-scale adsorption geometries are particularly well established. We propose that this could become useful for benchmarking theoretical methods for calculating adsorption processes. We compare the experimental results to six commonly used electron density functionals, including some (RPBE, BEEF-vdW) which were specifically developed to treat adsorption processes. The comparison shows that there is ample room for improvements in the theoretical descriptions.

[1]  C. Wöll,et al.  Adsorption of acenes on flat and vicinal Cu(111) surfaces: Step induced formation of lateral order , 2001 .

[2]  G. Ertl,et al.  Adsorption of carbon monoxide on silver/palladium alloys , 1972 .

[3]  B. D. Kay,et al.  n-alkanes on Pt(111) and on C(0001)Pt(111): chain length dependence of kinetic desorption parameters. , 2006, Journal of Chemical Physics.

[4]  T. J. Curtiss,et al.  Coverage dependent desorption kinetics of CO from Rh(111) using time-resolved specular helium scattering , 1991 .

[5]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  A. Noordermeer,et al.  Decomposition of methanol and the interaction of coadsorbed hydrogen and carbon monoxide on a Pd(111) surface , 1983 .

[7]  M. Kiskinova,et al.  Adsorption and coadsorption of carbon monoxide and hydrogen on Pd(111) , 1982 .

[8]  Ye Xu,et al.  Energetics of Adsorbed CH2 and CH on Pt(111) by Calorimetry: The Dissociative Adsorption of Diiodomethane , 2014 .

[9]  E. Karp,et al.  Energetics of adsorbed CH3 on Pt(111) by calorimetry. , 2013, Journal of the American Chemical Society.

[10]  J. Vickerman Model studies on bimetallic Cu/Ru catalysts III. Adsorption of carbon monoxide , 1981 .

[11]  G. Ertl,et al.  Adsorption of CO on a Ni(111) surface , 1974 .

[12]  C. Campbell,et al.  Experimental measurements of the energetics of surface reactions , 2009 .

[13]  J. Nørskov,et al.  Electrolysis of water on (oxidized) metal surfaces , 2005 .

[14]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[15]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  C. Campbell,et al.  Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. , 2013, Chemical reviews.

[17]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[18]  K. Burke Perspective on density functional theory. , 2012, The Journal of chemical physics.

[19]  S. Kevan,et al.  Desorption and molecular interactions on surfaces: , and , 1997 .

[20]  C. Campbell,et al.  Energetics of cyclohexene adsorption and reaction on Pt(111) by low-temperature microcalorimetry. , 2008, Journal of the American Chemical Society.

[21]  R. Nuzzo,et al.  Structural Models and Thermal Desorption Energetics for Multilayer Assemblies of the n-Alkanes on Pt(111) , 2000 .

[22]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[23]  L. Schmidt,et al.  Adsorption and desorption of CO and H2 on Rh(111): Laser-induced desorption☆ , 1988 .

[24]  L. Dubois,et al.  First-order corrections in modulated molecular beam desorption experiments , 1990 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[27]  J. Nørskov,et al.  Theoretical Analysis of Transition-Metal Catalysts for Formic Acid Decomposition , 2014 .

[28]  Gerhard Ertl,et al.  A molecular beam investigation of the catalytic oxidation of CO on Pd (111) , 1978 .

[29]  S. Kevan,et al.  Isothermal coverage dependent measurements of NH3 and ND3 desorption from Cu(001) , 1991 .

[30]  J. Pritchard,et al.  Interactions of CO molecules adsorbed on Cu(111) , 1979 .

[31]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[32]  B. D. Kay,et al.  n-alkanes on MgO(100). I. Coverage-dependent desorption kinetics of n-butane. , 2005, The Journal of chemical physics.

[33]  G. Ertl,et al.  A molecular beam investigation of the interactions of CO with a Pt(111) surface , 1981 .

[34]  U. Köhler,et al.  Kinetics of the adsorption of CO on Ni(111) , 1987 .

[35]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[36]  P. W. Palmberg,et al.  Structural Influences on Adsorbate Binding Energy. I. Carbon Monoxide on (100) Palladium , 1969 .

[37]  Klaus Christmann,et al.  Interaction of hydrogen with solid surfaces , 1988 .

[38]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[39]  C. Campbell,et al.  The entropies of adsorbed molecules. , 2012, Journal of the American Chemical Society.

[40]  A. Dal Corso,et al.  Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  G. Ertl,et al.  Adsorption of CO on Pd single crystal surfaces , 1974 .

[42]  W. A. Brown,et al.  Femtomole Adsorption Calorimetry on Single-Crystal Surfaces. , 1998, Chemical reviews.

[43]  J. Yates,et al.  Dependence of effective desorption kinetic parameters on surface coverage and adsorption temperature: CO on Pd(111) , 1989 .

[44]  L. Curtiss,et al.  Gaussian-4 theory. , 2007, The Journal of chemical physics.

[45]  J. Carrasco,et al.  The role of van der Waals forces in water adsorption on metals. , 2013, The Journal of chemical physics.

[46]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[47]  J. Nørskov,et al.  Energetics of Oxygen Adatoms, Hydroxyl Species and Water Dissociation on Pt(111) , 2012 .

[48]  Bruce E. Koel,et al.  Identification of adsorbed phenyl (C6H5) groups on metal surfaces: Electron-induced dissociation of benzene on Au(111) , 2001 .

[49]  X. Zhou,et al.  INTERACTIONS OF UV PHOTONS AND LOW ENERGY ELECTRONS WITH CHEMISORBED BENZENE ON AG(111) , 1990 .

[50]  V. Fiorin,et al.  Microcalorimetry of O2 and NO on flat and stepped platinum surfaces , 2009 .

[51]  J. Vaari,et al.  Adsorption and structure dependent desorption of CO on Co(0001) , 1998 .

[52]  E. Karp,et al.  The Energy of Adsorbed Hydroxyl on Pt(111) by Microcalorimetry , 2011 .

[53]  Robin Haunschild,et al.  New accurate reference energies for the G2/97 test set. , 2012, The Journal of chemical physics.

[54]  G. Ertl,et al.  A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface , 1981 .

[55]  R. D. Ramsier,et al.  NO adsorption and thermal behavior on Pd surfaces. A detailed comparative study , 1994 .

[56]  M. Grunze,et al.  Interaction of nitrogen with iron surfaces: I. Fe(100) and Fe(111) , 1977 .

[57]  E. Karp,et al.  Energy of Molecularly Adsorbed Water on Clean Pt(111) and Pt(111) with Coadsorbed Oxygen by Calorimetry , 2011 .

[58]  D. Goodman,et al.  CO Oxidation on Palladium. 1. A Combined Kinetic-Infrared Reflection Absorption Spectroscopic Study of Pd(100) , 1994 .

[59]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[60]  E. Karp,et al.  Energetics of Adsorbed CH3 and CH on Pt(111) by Calorimetry: Dissociative Adsorption of CH3I , 2013 .

[61]  A. Noordermeer,et al.  Comparison between the adsorption properties of Pd(111) and PdCu(111) surfaces for carbon monoxide and hydrogen , 1986 .

[62]  D. Harrington,et al.  A thermal desorption study of iodine on Pt( 1 1 1 ) , 2003 .

[63]  C. Campbell,et al.  Calorimetric Measurement of the Heat of Adsorption of Benzene on Pt(111) , 2004 .

[64]  T. Fischer,et al.  The binding energy of CO on clean and sulfur covered platinum surfaces , 1979 .

[65]  W. H. Weinberg,et al.  The chemisorption of hydrogen on Rh(111) , 1979 .

[66]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[67]  B. Poelsema,et al.  The dissociative adsorption of hydrogen on Pt(111): actuation and acceleration by atomic defects. , 2011, The Journal of chemical physics.

[68]  B. Poelsema,et al.  A thermal He scattering study of CO adsorption on Pt(111) , 1984 .

[69]  J. Carrasco,et al.  The Energy of Hydroxyl Coadsorbed with Water on Pt(111) , 2011 .

[70]  I. Ratajczykowa The influence of CO on hydrogen sorption by Pd(111) single crystals , 1986 .

[71]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[72]  Michael X. Yang,et al.  BENZENE ADSORPTION ON CU(111) : FORMATION OF A STABLE BILAYER , 1994 .

[73]  Joel B. Varley,et al.  CO and CO2 Hydrogenation to Methanol Calculated Using the BEEF-vdW Functional , 2013, Catalysis Letters.

[74]  E. Karp,et al.  Energetics of adsorbed methanol and methoxy on Pt(111) by microcalorimetry. , 2012, Journal of the American Chemical Society.

[75]  B. Koel,et al.  Study of high coverages of atomic oxygen on the Pt(111) surface , 1989 .

[76]  J. N. Russell,et al.  Extraction of kinetic parameters in temperature programmed desorption: A comparison of methods , 1987 .

[77]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[78]  R. Schäfer,et al.  Thermodynamics and kinetics of CO and benzene adsorption on Pt(111) studied with pulsed molecular beams and microcalorimetry , 2010 .

[79]  M. Hove,et al.  Adsorption of CO on Pd(100) , 1980 .

[80]  P. Feulner,et al.  An example of “fast” desorption: Anomalously high pre-exponentials for CO desorption from Ru (001) , 1978 .

[81]  H. Freund,et al.  An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts. , 2011, The Review of scientific instruments.

[82]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .