Outside nested decompositions of skew diagrams and Schur function determinants

In this paper we describe the thickened strips and the outside nested decompositions of any skew shape $\lambda/\mu$. For any such decomposition $\Phi=(\Theta_1,\Theta_2,\ldots,\Theta_g)$ of the skew shape $\lambda/\mu$ where $\Theta_i$ is a thickened strip for every $i$, if $r$ is the number of boxes that are contained in any two distinct thickened strips of $\Phi$, we establish a determinantal formula of the function $s_{\lambda/\mu}(X)p_{1^r}(X)$ with the Schur functions of thickened strips as entries, where $s_{\lambda/\mu}(X)$ is the Schur function of the skew shape $\lambda/\mu$ and $p_{1^r}(X)$ is the power sum symmetric function index by the partition $(1^r)$. This generalizes Hamel and Goulden's theorem on the outside decompositions of the skew shape $\lambda/\mu$. As an application of our theorem, we derive the number of $m$-strip tableaux which was first counted by Baryshnikov and Romik via extending the transfer operator approach due to Elkies.

[1]  A. Hamel Determinantal Forms for Symplectic and Orthogonal Schur Functions , 1997, Canadian Journal of Mathematics.

[2]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[3]  Greta Panova,et al.  Hook formulas for skew shapes I. q-analogues and bijections , 2015, J. Comb. Theory, Ser. A.

[4]  Lattice path proof of the ribbon determinant formula for Schur functions , 1991 .

[5]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[6]  Ian P. Goulden,et al.  Planar decompositions of tableaux and Schur function determinants , 1995, Eur. J. Comb..

[7]  C. Jacobi De functionibus alternantibus earumque divisione per productum e differentiis elementorum conflatum. , 1841 .

[8]  Noam D. Elkies On the sums Σ∞k=-∞(4k + 1)-n , 2003 .

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  M. Schützenberger,et al.  Equerres et fonctions de Schur , 1984 .

[11]  Alain Lascoux,et al.  Ribbon Schur Functions , 1988, Eur. J. Comb..

[12]  John R. Stembridge,et al.  Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .

[13]  Greta Panova,et al.  Hook formulas for skew shapes , 2015 .

[14]  Ääø,et al.  The Rank and Minimal Border Strip Decompositions of a Skew Partition , 2002 .

[15]  Arthur L. B. Yang,et al.  Transformations of Border Strips and Schur Function Determinants , 2004 .

[16]  Noam D. Elkies On the Sums , 2003, Am. Math. Mon..

[17]  yuliy baryshnikov,et al.  Enumeration formulas for young tableaux in a diagonal strip , 2007, 0709.0498.

[18]  The zrank conjecture and restricted Cauchy matrices , 2005, math/0504488.