Kinetic studies of Fos.Jun.DNA complex formation: DNA binding prior to dimerization.
暂无分享,去创建一个
The bZIP proteins Fos and Jun bind DNA rapidly and with high affinity, forming a heteromeric complex that mediates activated transcription. Here we use stopped-flow fluorescence resonance energy transfer (FRET) to study the kinetic pathway by which Fos.Jun. DNA complexes assemble. Though dimerization of Fos and Jun occurs rapidly in the absence of DNA, the rate of dimerization is enhanced in the presence of DNA. Global analysis of the kinetic data shows that the favored DNA binding pathway is one is which the two protein monomers bind DNA sequentially and assemble their dimerization interface while bound to DNA.
[1] M. Saraste,et al. FEBS Lett , 2000 .
[2] M. Green,et al. How eukaryotic transcription activators increase assembly of preinitiation complexes. , 1993, Cold Spring Harbor symposia on quantitative biology.
[3] J. Lakowicz. Principles of fluorescence spectroscopy , 1983 .