Ionic substitutions in calcium phosphates synthesized at low temperature.

Ionic substitutions have been proposed as a tool to improve the biological performance of calcium phosphate based materials. This review provides an overview of the recent results achieved on ion-substituted calcium phosphates prepared at low temperature, i.e. by direct synthesis in aqueous medium or through hydrolysis of more soluble calcium phosphates. Particular attention is focused on several ions, including Si, Sr, Mg, Zn and Mn, which are attracting increasing interest for their possible biological role, and on the recent trends and developments in the applications of ion-substituted calcium phosphates in the biomedical field.

[1]  J. Rocha,et al.  Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios , 2005 .

[2]  M. Bohner Reactivity of calcium phosphate cements , 2007 .

[3]  E. Hollande,et al.  Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells. , 2003, Biomaterials.

[4]  W. Bonfield,et al.  Chemical characterization of silicon-substituted hydroxyapatite. , 1999, Journal of biomedical materials research.

[5]  M. Sayer,et al.  Silicon substitution in the calcium phosphate bioceramics. , 2007, Biomaterials.

[6]  F. Miyaji,et al.  Formation and structure of zinc-substituted calcium hydroxyapatite , 2005 .

[7]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.

[8]  D. Mcconnell Apatite: Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences , 1973 .

[9]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[10]  A. Lebugle,et al.  Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe , 2004 .

[11]  C. Rey,et al.  Ion exchanges in apatites for biomedical application , 2005, Journal of materials science. Materials in medicine.

[12]  W. Bonfield,et al.  Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites , 2002, Journal of materials science. Materials in medicine.

[13]  A. Bigi,et al.  Effect of strontium and gelatin on the reactivity of alpha-tricalcium phosphate. , 2010, Acta biomaterialia.

[14]  Brent Constantz,et al.  Hydroxyapatite and Related Materials , 1994 .

[15]  N. Roveri,et al.  The role of magnesium on the structure of biological apatites , 1992, Calcified Tissue International.

[16]  C. Christiansen,et al.  Incorporation and distribution of strontium in bone. , 2001, Bone.

[17]  W. Lu,et al.  Solubility of strontium-substituted apatite by solid titration. , 2009, Acta biomaterialia.

[18]  E. M. Carlisle Silicon: A requirement in bone formation independent of vitamin D1 , 2006, Calcified Tissue International.

[19]  I. Lindqvist,et al.  Biochemistry of silicon and related problems , 1978 .

[20]  E C Moreno,et al.  Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. , 1977, Caries research.

[21]  R. Young,et al.  The structural location and role of Mn2+ partially substituted for Ca2+ in fluorapatite , 1985 .

[22]  Matthias Epple,et al.  Inorganic nanoparticles as carriers of nucleic acids into cells. , 2008, Angewandte Chemie.

[23]  M. Epple,et al.  Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments , 2007 .

[24]  R. Legeros,et al.  Properties of osteoconductive biomaterials: calcium phosphates. , 2002, Clinical orthopaedics and related research.

[25]  W. Bonfield,et al.  Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite. , 2006, Journal of biomedical materials research. Part A.

[26]  E. Shorr,et al.  The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man. , 1952, Bulletin of the Hospital for Joint Diseases.

[27]  W. E. Brown,et al.  The role of octacalcium phosphate in subcutaneous heterotopic calcification , 1985, Calcified Tissue International.

[28]  J. Chane-Ching,et al.  Colloidal and monocrystalline Ln3+ doped apatite calcium phosphate as biocompatible fluorescent probes. , 2006, Chemical communications.

[29]  X. Kewei,et al.  The influence of Sr doses on the in vitro biocompatibility and in vivo degradability of single-phase Sr-incorporated HAP cement. , 2008, Journal of biomedical materials research. Part A.

[30]  M. Sayer,et al.  Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate , 2006 .

[31]  Sarit B. Bhaduri,et al.  Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative , 2008 .

[32]  M. Vallet‐Regí,et al.  Silicon incorporation in hydroxylapatite obtained by controlled crystallization , 2004 .

[33]  M. Gazzano,et al.  Inhibiting effect of zinc on hydroxylapatite crystallization , 1995 .

[34]  M. Epple,et al.  Continuous synthesis of amorphous carbonated apatites. , 2002, Biomaterials.

[35]  F. T. Mariño,et al.  Combined effect of strontium and pyrophosphate on the properties of brushite cements. , 2008, Acta biomaterialia.

[36]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[37]  E. Fujii,et al.  Structural Characterization and Protein Adsorption Property of Hydroxyapatite Particles Modified With Zinc Ions , 2007 .

[38]  Ľ. Medvecký,et al.  Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid , 2006 .

[39]  G. H. Nancollas,et al.  A Mineralization Adsorption and Mobility Study of Hydroxyapatite Surfaces in the Presence of Zinc and Magnesium Ions , 1994 .

[40]  A. Bigi,et al.  Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements. , 2008, Journal of biomedical materials research. Part A.

[41]  M. Revilla,et al.  Effects on bone loss of manganese alone or with copper supplement in ovariectomized rats. A morphometric and densitomeric study. , 2000, European journal of obstetrics, gynecology, and reproductive biology.

[42]  M. Gazzano,et al.  Thermal stability of cadmium–calcium hydroxyapatite solid solutions , 1986 .

[43]  J. Reginster,et al.  Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. , 2009, Bone.

[44]  K. Yamashita,et al.  The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. , 2009, Materials science & engineering. C, Materials for biological applications.

[45]  K. Kandori,et al.  Preparation and characterization of magnesium–calcium hydroxyapatites , 1996 .

[46]  Y. Leng,et al.  In situ TEM examinations of octacalcium phosphate to hydroxyapatite transformation , 2006 .

[47]  C. Moseke,et al.  Strontium modified biocements with zero order release kinetics. , 2008, Biomaterials.

[48]  Elisabetta Foresti,et al.  Magnesium influence on hydroxyapatite crystallization , 1993 .

[49]  P. Marie Strontium ranelate: a novel mode of action optimizing bone formation and resorption , 2004, Osteoporosis International.

[50]  G. H. Nancollas,et al.  Calcium orthophosphates: crystallization and dissolution. , 2008, Chemical reviews.

[51]  C. Blitterswijk,et al.  Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution , 2002 .

[52]  M. Gazzano,et al.  Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. , 2009, Journal of biomedical materials research. Part A.

[53]  R. Kamijo,et al.  Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. , 2006, Biomaterials.

[54]  I. Mayer,et al.  Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral , 2006, Calcified Tissue International.

[55]  C. Rey,et al.  Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: A preamble to the activation of bone repair materials , 2008 .

[56]  A. Bigi,et al.  Nanocrystals of magnesium and fluoride substituted hydroxyapatite. , 1998, Journal of inorganic biochemistry.

[57]  RACQUEL ZAPANTA-LEGEROS,et al.  Effect of Carbonate on the Lattice Parameters of Apatite , 1965, Nature.

[58]  P. Ammann Strontium ranelate: A novel mode of action leading to renewed bone quality , 2004, Osteoporosis International.

[59]  R. Wilson,et al.  Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. , 2006, Biomaterials.

[60]  Yuanzhi Tang,et al.  Zinc incorporation into hydroxylapatite. , 2009, Biomaterials.

[61]  R. Legeros,et al.  Calcium phosphate-based osteoinductive materials. , 2008, Chemical reviews.

[62]  H. Madsen Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO4, 2H2O) and its transformation to octacalcium phosphate and apatite , 2008 .

[63]  M. Bohner,et al.  Silicon-substituted calcium phosphates - a critical view. , 2009, Biomaterials.

[64]  J A Planell,et al.  The Ca/P range of nanoapatitic calcium phosphate cements. , 2002, Biomaterials.

[65]  L. Kloo,et al.  The observation of nano-crystalline calcium phosphate precipitate in a simple supersaturated inorganic blood serum model - composition and morphology. , 2009, Journal of applied biomaterials & biomechanics : JABB.

[66]  G. Logroscino,et al.  Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon , 2008 .

[67]  F. Cuisinier,et al.  Phase Relations Between β‐Tricalcium Phosphate and Hydroxyapatite with Manganese(II): Structural and Spectroscopic Properties , 2006 .

[68]  W. Lu,et al.  Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. , 2007, Biomaterials.

[69]  D. Ellis,et al.  The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. , 2009, Physical chemistry chemical physics : PCCP.

[70]  F. Lin,et al.  The fabrication and characterization of dicalcium phosphate dihydrate-modified magnetic nanoparticles and their performance in hyperthermia processes in vitro. , 2009, Biomaterials.

[71]  J. Barralet,et al.  Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants , 2005, Journal of materials science. Materials in medicine.

[72]  Xiaoyan Ma,et al.  Initial stages of hydration and Zn substitution/occupation on hydroxyapatite (0001) surfaces. , 2008, Biomaterials.

[73]  G. Daculsi,et al.  Solution-mediated transformation of octacalcium phosphate (OCP) to apatite. , 1989, Scanning microscopy.

[74]  K. Onuma,et al.  Hydrolysis and cytocompatibility of zinc-containing α-tricalcium phosphate powder , 2004 .

[75]  E M Carlisle,et al.  Silicon: A Possible Factor in Bone Calcification , 1970, Science.

[76]  M. D. Vlad,et al.  Effect of iron on the setting properties of α-TCP bone cements , 2005 .

[77]  M. Vallet‐Regí,et al.  High Specific Surface Area in Nanometric Carbonated Hydroxyapatite , 2008 .

[78]  D. Choi,et al.  Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. , 2005, Acta biomaterialia.

[79]  Yong Han,et al.  Development of a strontium-containing hydroxyapatite bone cement. , 2005, Biomaterials.

[80]  W. Bonfield,et al.  A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules , 2002, Journal of materials science. Materials in medicine.

[81]  F. Müller,et al.  Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. , 2006, Acta biomaterialia.

[82]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[83]  A. Oyane,et al.  Zinc-containing apatite layers on external fixation rods promoting cell activity. , 2010, Acta biomaterialia.

[84]  Masayoshi Yamaguchi,et al.  Role of zinc in bone formation and bone resorption , 1998 .

[85]  R. J. Williams,et al.  Biomineralization: Chemical and Biochemical Perspectives , 1989 .

[86]  K. Onuma,et al.  Cluster Growth Model for Hydroxyapatite , 1998 .

[87]  Anna Tampieri,et al.  Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour , 2008, Journal of materials science. Materials in medicine.

[88]  A. Bigi,et al.  Effect of Mg(2+), Sr(2+), and Mn(2+) on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. , 2009, Journal of inorganic biochemistry.

[89]  A S Prasad,et al.  Zinc: an overview. , 1995, Nutrition.

[90]  J. Domingo,et al.  ACCUMULATION OF METALS IN AUTOPSY TISSUES OF SUBJECTS LIVING IN TARRAGONA COUNTY, SPAIN , 2001, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[91]  M. Gazzano,et al.  Effect of foreign ions on the conversion of brushite and octacalcium phosphate into hydroxyapatite , 1988 .

[92]  K. Onuma,et al.  Inhibitory Effect of Magnesium and Zinc on Crystallization Kinetics of Hydroxyapatite (0001) Face , 2000 .

[93]  W. Bonfield,et al.  Human osteoblast response to silicon-substituted hydroxyapatite. , 2006, Journal of biomedical materials research. Part A.

[94]  C. Rey,et al.  Surface characteristics of nanocrystalline apatites: effect of mg surface enrichment on morphology, surface hydration species, and cationic environments. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[95]  G. Daculsi,et al.  Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. , 2007, Biomaterials.

[96]  E. Landi,et al.  Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. , 2008, Acta biomaterialia.

[97]  K. Schwarz Significance and Functions of Silicon in Warm-Blooded Animals. Review and Outlook , 1978 .

[98]  L. Grover,et al.  Antimicrobial potency of alkali ion substituted calcium phosphate cements. , 2005, Biomaterials.

[99]  A. Boskey,et al.  Magnesium stabilization of amorphous calcium phosphate: A kinetic study , 1974 .

[100]  G. H. Nancollas,et al.  Crystal growth of calcium phosphates in the presence of magnesium ions , 1985 .

[101]  R. Verbeeck,et al.  Stoichiometry of K+- and CO32--containing apatites prepared by the hydrolysis of octacalcium phosphate. , 1996 .

[102]  M. Gazzano,et al.  Rietveld structure refinements of calcium hydroxylapatite containing magnesium , 1996 .

[103]  A. W. Frazier,et al.  Octacalcium Phosphate and Hydroxyapatite: Crystallographic and Chemical Relations between Octacalcium Phosphate and Hydroxyapatite , 1962, Nature.

[104]  S. Dorozhkin Calcium Orthophosphates in Nature, Biology and Medicine , 2009, Materials.

[105]  W. E. Brown,et al.  Physicochemical properties of calcific deposits isolated from porcine bioprosthetic heart valves removed from patients following 2-13 years function. , 1994, Journal of biomedical materials research.

[106]  A. S. Posner,et al.  Crystal Structure of Hydroxyapatite , 1964, Nature.

[107]  R. Geros Variations in the Crystalline Components of Human Dental Calculus: I. Crystallographic and Spectroscopic Methods of Analysis , 1974 .

[108]  J N Skepper,et al.  Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. , 2003, Biomaterials.

[109]  F. Cuisinier,et al.  TEM study of the morphology of Mn2+ -doped calcium hydroxyapatite and beta-tricalcium phosphate. , 2008, Journal of inorganic biochemistry.

[110]  S. R. Kim,et al.  Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. , 2003, Biomaterials.

[111]  M. J. Stott,et al.  First Principles Investigation of Mineral Component of Bone: CO3 Substitutions in Hydroxyapatite , 2005 .

[112]  J. Voegel,et al.  First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite. , 1998, Acta crystallographica. Section D, Biological crystallography.

[113]  Yann C. Fredholm,et al.  Structural analysis of a series of strontium-substituted apatites. , 2008, Acta biomaterialia.

[114]  W. E. Brown,et al.  Octacalcium Phosphate and Hydroxyapatite: Crystal Structure of Octacalcium Phosphate , 1962, Nature.

[115]  Fang-Lian Yao,et al.  Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties. , 2009, Acta biomaterialia.

[116]  M. Vallet‐Regí,et al.  Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants , 2005 .

[117]  K. Debari,et al.  Scanning electron microscopy and energy-dispersive X-ray microanalysis studies of early dental calculus on resin plates exposed to human oral cavities. , 1992, Scanning microscopy.

[118]  S. Saint-Jean,et al.  Study of the reactivity and in vitro bioactivity of Sr-substituted α-TCP cements , 2005, Journal of materials science. Materials in medicine.

[119]  B. Moonga,et al.  Zinc is a potent inhibitor of osteoclastic bone resorption in vitro , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[120]  I. Mihailescu,et al.  Human osteoblast response to pulsed laser deposited calcium phosphate coatings. , 2005, Biomaterials.

[121]  A. L. Oliveira,et al.  Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[122]  M. Gazzano,et al.  Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium , 1997 .

[123]  P. Layrolle,et al.  Nucleation of biomimetic Ca-P coatings on ti6A14V from a SBF x 5 solution: influence of magnesium. , 2002, Biomaterials.

[124]  Matthias Epple,et al.  Biological and medical significance of calcium phosphates. , 2002, Angewandte Chemie.

[125]  J. Burnell,et al.  Normal maturational changes in bone matrix, mineral, and crystal size in the rat , 2006, Calcified Tissue International.

[126]  L. J. Valle,et al.  Injectable iron-modified apatitic bone cement intended for kyphoplasty: cytocompatibility study , 2008, Journal of materials science. Materials in medicine.

[127]  Y. Leng,et al.  Characterization and structural analysis of zinc-substituted hydroxyapatites. , 2009, Acta biomaterialia.

[128]  B. Ben-Nissan,et al.  Biological and Synthetic Apatites , 2008 .

[129]  M. Gazzano,et al.  Strontium-substituted hydroxyapatite nanocrystals. , 2007 .

[130]  F. Babonneau,et al.  Revisiting silicate substituted hydroxyapatite by solid‐state NMR , 2008, Magnetic resonance in chemistry : MRC.

[131]  T. Goto,et al.  Effects of CO2-3 ion on the formation of octacalcium phosphate at pH 7.4 and 37°C , 1994 .

[132]  G. Logroscino,et al.  Sr-substituted hydroxyapatites for osteoporotic bone replacement. , 2007, Acta biomaterialia.

[133]  Xiupeng Wang,et al.  Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions , 2008, Journal of materials science. Materials in medicine.

[134]  Tzu-Wei Wang,et al.  A novel biomagnetic nanoparticle based on hydroxyapatite , 2007 .

[135]  J. Ferreira,et al.  Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites , 2006 .

[136]  F. Lin,et al.  The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. , 2009, Biomaterials.

[137]  J. Werckmann,et al.  Manganese in Precipitated Hydroxyapatites , 2003 .

[138]  A. S. Posner,et al.  Synthetic amorphous calcium phosphate and its relation to bone mineral structure , 1975 .

[139]  K. Matsunaga First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. , 2008, The Journal of chemical physics.

[140]  M. Gaft,et al.  La ions in precipitated hydroxyapatites. , 1999, Journal of inorganic biochemistry.

[141]  K. Luk,et al.  Nucleation of Strontium-Substituted Apatite , 2009 .

[142]  F. Müller,et al.  Biomimetic apatite coatings--carbonate substitution and preferred growth orientation. , 2007, Biomolecular engineering.

[143]  K. Matsunaga,et al.  Strontium substitution in bioactive calcium phosphates: a first-principles study. , 2009, The journal of physical chemistry. B.