LDPC Decoder with Embedded Coding on Unreliable Memories

Unreliable message storage severely degrades the performance of LDPC decoders. This paper discusses the various impacts of bit errors of finite-precision messages on LDPC decoders. Discrete density evolution indicates that the sign bits of finite-precision messages have the most influence on the decoding threshold. As a result, this paper proposes to protect the sign bits of messages by Hamming product codes. Simulation results show that the proposed scheme only has a degradation of 0.1 dB for the LDPC decoder with a storage error ratio of 0.001, which outperforms the traditional triple modular redundancy scheme.

[1]  Lara Dolecek,et al.  Noisy belief propagation decoder , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.

[2]  Lara Dolecek,et al.  Gallager B Decoder on Noisy Hardware , 2013, IEEE Transactions on Communications.

[3]  François Leduc-Primeau,et al.  Faulty Gallager-B decoding with optimal message repetition , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  Lara Dolecek,et al.  Gallager B LDPC Decoder with Transient and permanent errors , 2013, 2013 IEEE International Symposium on Information Theory.

[5]  Jianhua Lu,et al.  CodeHop: physical layer error correction and encryption with LDPC-based code hopping , 2016, Science China Information Sciences.

[6]  David Gump,et al.  NASA's approach to commercial cargo and crew transportation , 2008 .

[7]  David Declercq,et al.  Analysis and Design of Finite Alphabet Iterative Decoders Robust to Faulty Hardware , 2015, IEEE Transactions on Communications.

[8]  Alexios Balatsoukas-Stimming,et al.  Density Evolution for Min-Sum Decoding of LDPC Codes Under Unreliable Message Storage , 2014, IEEE Communications Letters.

[9]  Dariush Divsalar,et al.  The Development of Turbo and LDPC Codes for Deep-Space Applications , 2007, Proceedings of the IEEE.

[10]  Mu Zhang,et al.  Two Enhanced Reliability-Based Decoding Algorithms for Nonbinary LDPC Codes , 2016, IEEE Transactions on Communications.

[11]  David Declercq,et al.  Min-Sum-based decoders running on noisy hardware , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[12]  Lara Dolecek,et al.  Belief Propagation Algorithms on Noisy Hardware , 2015, IEEE Transactions on Communications.

[13]  Jeremy Thorpe,et al.  Memory-efficient decoding of LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[14]  Ming Xiao,et al.  On-Line Fountain Codes With Unequal Error Protection , 2017, IEEE Communications Letters.

[15]  Lav R. Varshney,et al.  Performance of LDPC Codes Under Faulty Iterative Decoding , 2008, IEEE Transactions on Information Theory.

[16]  Jianhua Lu,et al.  Generalized Low-Density Parity-Check coding scheme with Partial-Band Jamming , 2014, Tsinghua Science and Technology.