Features Moving Madly: A Formal Perspective on Feature Percolation in the Minimalist Program

AbstractI show that adding a mechanism of feature percolation (via specifier head agreement) to Minimalist Grammars (MGs) [Stabler (1997) In Retore C. (ed.) Logical Aspects of Computational Linguistics, Springer Verlag (Lecture Notes in Computer Science 1328), NY, pp. 68–95] takes them out of the class of context-sensitive grammar formalisms. The main theorem of the paper is that adding a mechanism of feature percolation to MGs allows them to implement infinite abaci [Lambek (1961), Canadian Mathematical bulletin 4, pp. 259–302], which can simulate any Turing Machine computation. As a simple corollary, I show that, for any computable $$f\!:\mathbb{N} \rightarrow \mathbb{N}$$, MGs thus enhanced can generate the language $$L_{a^{f(n)}} = \{ a^{f(n)} : n \in \mathbb{N}\}$$.

[1]  J. Lambek How to Program an Infinite Abacus , 1961, Canadian Mathematical Bulletin.

[2]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[3]  John Robert Ross,et al.  Constraints on variables in syntax , 1967 .

[4]  Dana Angluin,et al.  Inductive Inference of Formal Languages from Positive Data , 1980, Inf. Control..

[5]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[6]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[7]  Noam Chomsky A minimalist program for linguistic theory , 1992 .

[8]  Noam Chomsky,et al.  The Minimalist Program , 1992 .

[9]  L. Moritz Pied-piping and specifier-head agreement , 1994 .

[10]  Edward P. Stabler,et al.  Derivational Minimalism , 1996, LACL.

[11]  Hilda Koopman,et al.  The Spec head configuration , 1996 .

[12]  Jens Michaelis,et al.  Derivational Minimalism Is Mildly Context-Sensitive , 1998, LACL.

[13]  Makoto Kanazawa Learnable Classes of Categorial Grammars , 1998 .

[14]  Mark Steedman,et al.  The nite connectivity of linguistic structure , 1999 .

[15]  Noam Chomsky Derivation by phase , 1999 .

[16]  Christian Retoré,et al.  Towards a minimal logic for minimalist grammars: a trans-formational use of Lambek calculus , 1999 .

[17]  M. Brody,et al.  Mirror Theory: Syntactic Representation in Perfect Syntax , 2000, Linguistic Inquiry.

[18]  Jens Michaelis,et al.  Transforming Linear Context-Free Rewriting Systems into Minimalist Grammars , 2001, LACL.

[19]  Gregory M. Kobele,et al.  Learning Mirror Theory , 2002, TAG+.

[20]  Hans van de Koot,et al.  The Configurational Matrix , 2002, Linguistic Inquiry.

[21]  Gregory M. Kobele Formalizing Mirror Theory , 2002, Grammars.

[22]  Charles Yang Remarks on “Derivation by Phase”: Feature Valuation, Agreement, and Intervention , 2002 .

[23]  Edward P. Stabler,et al.  Structural similarity within and among languages , 2003, Theor. Comput. Sci..

[24]  Peter Hallman,et al.  Symmetry in Structure Building , 2004 .

[25]  Willemijn Vermaat The Minimalist Move Operation in a Deductive Perspective , 2004 .

[26]  Edward P. Stabler,et al.  Generative Grammars in Resource Logics , 2004 .

[27]  Christian Retoré,et al.  Resource Logics and Minimalist Grammars , 2004 .

[28]  F. Duan,et al.  Symmetry of Structure , 2005 .