Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC‐2/EGL‐3): mutant analysis by mass spectrometry

Biologically active peptides are synthesized as larger inactive proprotein peptide precursors which are processed by the concerted action of a cascade of enzymes. Among the proprotein convertases, PC2 is widely expressed in neuro‐endocrine tissues and has been proposed to be the major convertase involved in the biosynthesis of neuropeptides. In this study, we have examined the role of the Caenorhabditis elegans orthologue PC2/EGL‐3 in the processing of proprotein peptide precursors. We recently isolated and identified 60 endogenous peptides in the nematode C. elegans by two‐dimensional nanoscale liquid chromatography – quadrupole time‐of‐flight tandem mass spectrometry. In the present study, we compare the peptide profile of different C. elegans strains, including PC2/EGL‐3 mutants. For this purpose, we used an offline approach in which HPLC fractions are analysed by a matrix‐assisted laser desorption ionisation – time of flight mass spectrometer. This differential peptidomic approach unambiguously provides evidence for the role of PC2/EGL‐3 in the processing of FMRFamide‐like peptide (FLP) precursors and neuropeptide‐like protein (NLP) precursors in nematodes.

[1]  L. Schoofs,et al.  Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta migratoria. , 2001, European journal of biochemistry.

[2]  Cori Bargmann,et al.  The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. , 1993, Genetics.

[3]  I. Dickerson,et al.  Isolation andin Situ localization of a cDNA encoding a Kex2-like prohormone convertase in the nematodeCaenorhabditis elegans , 1994, Cellular and Molecular Neurobiology.

[4]  L. Orci,et al.  Severe Defect in Proglucagon Processing in Islet A-cells of Prohormone Convertase 2 Null Mice* , 2001, The Journal of Biological Chemistry.

[5]  C. Li,et al.  Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. , 1998, Science.

[6]  A. Beaudet,et al.  Immunohistochemical evidence for the involvement of protein convertases 5A and 2 in the processing of pro‐neurotensin in rat brain , 2000, The Journal of comparative neurology.

[7]  D. Vieau,et al.  Characterization of the cDNA encoding the prohormone convertase PC2 and localization of the mRNA in the brain of the frog Rana ridibunda. , 1998, Brain research. Molecular brain research.

[8]  D. Steiner,et al.  Specificity of Prohormone Convertase 2 on Proenkephalin and Proenkephalin-related Substrates* , 1998, The Journal of Biological Chemistry.

[9]  G J Martens,et al.  Structure and expression of Xenopus prohormone convertase PC2 , 1992, FEBS letters.

[10]  K. Broadie,et al.  The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans , 2002, Current Opinion in Neurobiology.

[11]  K. Broadie,et al.  Drosophila CAPS Is an Essential Gene that Regulates Dense-Core Vesicle Release and Synaptic Vesicle Fusion , 2001, Neuron.

[12]  L. Orci,et al.  Incomplete Processing of Proinsulin to Insulin Accompanied by Elevation of Des-31,32 Proinsulin Intermediates in Islets of Mice Lacking Active PC2* , 1998, The Journal of Biological Chemistry.

[13]  Kyuhyung Kim,et al.  Expression and regulation of an FMRFamide‐related neuropeptide gene family in Caenorhabditis elegans , 2004, The Journal of comparative neurology.

[14]  Michael A. Costa,et al.  Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. , 2001, Genes & development.

[15]  L. Orci,et al.  Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Bloom The UNC-104/KIF1 family of kinesins. , 2001, Current opinion in cell biology.

[17]  J. Kaplan,et al.  The EGL-3 Proprotein Convertase Regulates Mechanosensory Responses of Caenorhabditis elegans , 2001, The Journal of Neuroscience.

[18]  L. Goldstein,et al.  Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. , 2000, Annual review of neuroscience.

[19]  T. Martin,et al.  Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells. , 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  L. Schoofs,et al.  Peptidomics of the Larval Drosophila melanogasterCentral Nervous System* , 2002, The Journal of Biological Chemistry.

[21]  N. Seidah,et al.  cDNA structure and in situ localization of the Aplysia californica pro‐hormone convertase PC2 , 1993, FEBS letters.

[22]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[23]  J. Veenstra,et al.  Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. , 2000, Archives of insect biochemistry and physiology.

[24]  P. Leder,et al.  The Neuroendocrine Protein 7B2 Is Required for Peptide Hormone Processing In Vivo and Provides a Novel Mechanism for Pituitary Cushing’s Disease , 1999, Cell.

[25]  S. Husson,et al.  Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry. , 2005, Biochemical and biophysical research communications.

[26]  L. Schoofs,et al.  Isolation, identification and synthesis of PDVDHFLRFamide (SchistoFLRFamide) in Locusta migratoria and its association with the male accessory glands, the salivary glands, the heart, and the oviduct , 1993, Peptides.

[27]  J. Kaplan,et al.  The EGL-21 Carboxypeptidase E Facilitates Acetylcholine Release at Caenorhabditis elegans Neuromuscular Junctions , 2003, The Journal of Neuroscience.

[28]  PC2 and 7B2 null mice demonstrate that PC2 is essential for normal pro-CCK processing. , 2000, Biochemical and biophysical research communications.

[29]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[30]  Lloyd D. Fricker,et al.  Neuropeptide-processing enzymes: Applications for drug discovery , 2005, The AAPS Journal.

[31]  M. Beinfeld Prohormone and proneuropeptide processing , 1998, Endocrine.

[32]  T. Geary,et al.  Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. , 2005, International journal for parasitology.

[33]  Liliane Schoofs,et al.  Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. , 2005, Journal of mass spectrometry : JMS.

[34]  B. M. Cain,et al.  Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain , 2003, The Journal of comparative neurology.

[35]  A. Rose,et al.  A look at the Caenorhabditis elegans Kex2/Subtilisin‐like proprotein convertase family , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[36]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[37]  G. Hendy,et al.  Peptide hormone precursor processing: getting sorted? , 1999, Molecular and Cellular Endocrinology.

[38]  A. Rose,et al.  The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. , 1995, Genes & development.

[39]  D. Steiner,et al.  Proteolytic Processing Mechanisms in the Biosynthesis of Neuroendocrine Peptides: The Subtilisin-like Proprotein Convertases , 1995, Frontiers in Neuroendocrinology.

[40]  Isolation of a cDNA encoding a Kex2-like endoprotease with homology to furin from the nematode Caenorhabditis elegans. , 1997, DNA and cell biology.

[41]  C. Schwartz,et al.  Dense Core Vesicle Dynamics in Caenorhabditis elegans Neurons and the Role of Kinesin UNC‐104 , 2004, Traffic.

[42]  M. Chalfie,et al.  Organogenesis in C. elegans: Positioning of neurons and muscles in the egg-laying system , 1990, Neuron.

[43]  H. Horvitz,et al.  Egg-laying defective mutants of the nematode Caenorhabditis elegans. , 1983, Genetics.

[44]  D L Wilson,et al.  Isolation and in situ localization of a cDNA encoding a Kex2-like prohormone convertase in the nematode Caenorhabditis elegans. , 1994, Cellular and molecular neurobiology.

[45]  W. Schafer,et al.  Effect of a neuropeptide gene on behavioral states in Caenorhabditis elegans egg-laying. , 2000, Genetics.

[46]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[47]  G. Ruvkun,et al.  daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. , 2003, Genes & development.

[48]  A. Hart,et al.  Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. Vishnuvardhan,et al.  Selective roles for the PC2 processing enzyme in the regulation of peptide neurotransmitter levels in brain and peripheral neuroendocrine tissues of PC2 deficient mice , 2003, Neuropeptides.

[50]  A. Viale,et al.  Cellular Localization and Role of Prohormone Convertases in the Processing of Pro-melanin Concentrating Hormone in Mammals* , 1999, The Journal of Biological Chemistry.

[51]  M. Nonet,et al.  Sorting and transport in C. elegans: aA model system with a sequenced genome. , 2000, Current opinion in cell biology.

[52]  A. Smit,et al.  Molluscan putative prohormore convertases: Structural diversity in the central nervous system of Lymnaea stagnalis , 1992, FEBS letters.

[53]  R. Fuller,et al.  A Role for amontillado, the DrosophilaHomolog of the Neuropeptide Precursor Processing Protease PC2, in Triggering Hatching Behavior , 1999, The Journal of Neuroscience.

[54]  T. Martin,et al.  Ca2+-Dependent Activator Protein for Secretion Is Critical for the Fusion of Dense-Core Vesicles with the Membrane in Calf Adrenal Chromaffin Cells , 1999, The Journal of Neuroscience.

[55]  I. Lindberg,et al.  Prodynorphin Processing by Proprotein Convertase 2 , 1998, The Journal of Biological Chemistry.

[56]  D. Steiner,et al.  Endocrinomic profile of neurointermediate lobe pituitary prohormone processing in PC1/3- and PC2-Null mice using SELDI-TOF mass spectrometry. , 2005, Journal of molecular endocrinology.

[57]  M. Marra,et al.  Functional Genomics in Caenorhabditis elegans: An Approach Involving Comparisons of Sequences from Related Nematodes , 1999 .

[58]  C. Li,et al.  The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans , 2005, Parasitology.

[59]  Kyuhyung Kim,et al.  FMRFamide-related neuropeptide gene family in Caenorhabditis elegans , 1999, Brain Research.

[60]  J. Thorner,et al.  Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor , 1984, Cell.

[61]  J. Thomas,et al.  Genetic analysis of defecation in Caenorhabditis elegans. , 1990, Genetics.

[62]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[63]  I. Lindberg,et al.  CLEAVAGE AT SINGLE BASIC RESIDUES AND ENHANCED PROCESSING IN THE PRESENCE OF CARBOXYPEPTIDASE ACTIVITY , 1998 .