Bayesian approach to the design of chemical species tomography experiments.

Reconstruction accuracy in chemical species tomography depends strongly on the arrangement of optical paths transecting the imaging domain. Optimizing the path arrangement requires a scheme that can predict the quality of a proposed arrangement prior to measurement. This paper presents a new Bayesian method for scoring path arrangements based on the estimated a posteriori covariance matrix. This technique focuses on defining an objective function that incorporates the same a priori information about the flow needed to carry out limited data tomography. Constrained and unconstrained path optimization studies verify the predictive capabilities of the objective function, and that superior reconstruction quality is obtained with optimized path arrangements.

[1]  Steven A. Arcone,et al.  Forward and inverse problems in GPR research , 2013 .

[2]  N Terzija,et al.  Image optimization for chemical species tomography with an irregular and sparse beam array , 2008 .

[3]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[4]  Glenn P. Forney,et al.  Fire dynamics simulator- technical reference guide , 2000 .

[5]  A. Robins,et al.  Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer , 1982, Journal of Fluid Mechanics.

[6]  Jari P. Kaipio,et al.  Posterior covariance related optimal current patterns in electrical impedance tomography , 2004 .

[7]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[8]  Ronald K. Hanson,et al.  Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm , 2006 .

[9]  Henning Bockhorn,et al.  Tomographic reconstruction of 2D-OH∗-chemiluminescence distributions in turbulent diffusion flames , 2012 .

[10]  Prabhat Munshi,et al.  Performance of iterative tomographic algorithms applied to non-destructive evaluation with limited data , 1997 .

[11]  Robert J. Santoro,et al.  Optical tomography for flow field diagnostics , 1981 .

[12]  Michael Prange,et al.  Guided Bayesian optimal experimental design , 2010 .

[13]  M. G. Twynstra,et al.  Laser-absorption tomography beam arrangement optimization using resolution matrices. , 2012, Applied optics.

[14]  K. Daun Infrared species limited data tomography through Tikhonov reconstruction , 2010 .

[15]  Krikor B. Ozanyan,et al.  High-speed chemical species tomography in a multi-cylinder automotive engine , 2010 .

[16]  B. M. Gibbs,et al.  Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. , 2007, Journal of environmental management.

[17]  Kyle J. Daun,et al.  Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information , 2016 .

[18]  Jerry M. Seitzman,et al.  Planar laser-fluorescence imaging of combustion gases , 1990 .

[19]  S A Tsekenis,et al.  Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images. , 2015, The Review of scientific instruments.

[20]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[21]  F. Gouldin,et al.  Tomographic reconstruction of 2-D absorption coefficient distributions from a limited set of infrared absorption data , 1998 .

[22]  R. J. Santoro,et al.  Optical tomography for flow field diagnostics , 1980 .

[23]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[24]  Steven L. Waslander,et al.  Infrared species tomography of a transient flow field using Kalman filtering. , 2011, Applied optics.

[25]  Sergey N. Vecherin,et al.  Time-dependent stochastic inversion in acoustic travel-time tomography of the atmosphere , 2006 .

[26]  NUUTTI HYVÖNEN,et al.  Optimizing Electrode Positions in Electrical Impedance Tomography , 2014, SIAM J. Appl. Math..

[27]  Stephen J Carey,et al.  Toward in-cylinder absorption tomography in a production engine. , 2005, Applied optics.

[28]  Thomas Lagier,et al.  Fugitive Methane Emissions from Landfills: Field Comparison of Five Methods on a French Landfill , 2010 .

[29]  Carol A. Brereton,et al.  Identifying sources of fugitive emissions in industrial facilities using trajectory statistical methods , 2012 .

[30]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[31]  Arto Voutilainen,et al.  Optimal current patterns in dynamical electrical impedance tomography imaging , 2007 .

[32]  Scott C Herndon,et al.  Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. , 2004, Environmental science & technology.

[33]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[34]  Kyle J. Daun,et al.  Optimising laser absorption tomography beam arrays for imaging chemical species in gas turbine engine exhaust plumes , 2013 .